DOI QR코드

DOI QR Code

Plastic Deformation Behavior of Sintered Fe-Based Alloys for Light-Weight Automotive Components

  • Kang, Yohan (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Yoon, Suchul (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Minwook (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Chonbuk National University)
  • Received : 2014.05.07
  • Accepted : 2014.05.30
  • Published : 2014.05.30

Abstract

We investigated the effects of the chemical composition and the relative density on the plastic deformation behavior of sintered Fe-based alloys by means of compressive tests. Overall compressive stresses increased as the amount of alloying elements and the relative density were respectively increased. Addition of alloying elements except for Mo increased the yield stress regardless of the relative density. The relationship between the effects of the chemical composition and the relative density and the mean rate of the stress increase was analyzed. A constitutive equation based on the Ludwik equation with the regressed parameters was proposed to predict the compressive true stress-true strain curves of the sintered Fe-based alloys. The K and n values used in the proposed equation were regressed as a function of the alloying elements and the relative density based on the individual K and n values. The plastic deformation behavior predicted using the proposed constitutive equation showed reliable accuracy compared with experimental data.

References

  1. E. Voce, J. Inst. Met. 74, 537 (1948).
  2. J. H. Hollomon, Trans. AIME 162, 268 (1945).
  3. P. Ludwik, Elemente der Technologischen Mechanik, (Verlag Von Julius Springer, Leipzig, 1909) p. 32.
  4. H. W. Swift, J. Mech. Phys. Solids 1, 1 (1952). https://doi.org/10.1016/0022-5096(52)90002-1
  5. D. C. Ludwigson, Metall. Trans. 2, 2825 (1971). https://doi.org/10.1007/BF02813258
  6. J. Hirsch and T. Al-Samman, Acta Mater. 61, 818 (2013). https://doi.org/10.1016/j.actamat.2012.10.044
  7. D. K. Park and Y. J. Kim, J. Kor. Pow. Metall. Inst. 13, 1 (2006). https://doi.org/10.4150/KPMI.2006.13.1.001
  8. Z. Zhang and R. Sandstrom, J. Alloys Compd. 363, 194 (2004). https://doi.org/10.1016/S0925-8388(03)00450-X
  9. D. Shanmugasundaram and R. Chandramouli, Mater. Des. 30, 3444 (2009). https://doi.org/10.1016/j.matdes.2009.03.020
  10. W. F. Wang, Mater. Sci. Eng. A 402, 92 (2005). https://doi.org/10.1016/j.msea.2005.04.016
  11. J. Victoria-Hernandez, D. Hernandez-Silva, and M. Vite-Torres, Wear 267, 340 (2009). https://doi.org/10.1016/j.wear.2008.12.085
  12. H. Zuhailawati, T. C. Geok, and P. Basu, Mater. Des. 31, 2211 (2010). https://doi.org/10.1016/j.matdes.2009.10.034
  13. M. E. Sotomayor, L. M. Ospina, B. Levenfeld, and A. Varez, Mater. Charac. 86, 108 (2013). https://doi.org/10.1016/j.matchar.2013.09.020
  14. U. Bohnenkamp and R. Sandstrom, Steel Res. 71, 88 (2000). https://doi.org/10.1002/srin.200005695
  15. S. Gialanella, X. Amils, M. D. Baro, P. Delcroix, G. Le Caër, L. Lutterotti, and S. Surinach, Acta Mater. 46, 3305 (1998). https://doi.org/10.1016/S1359-6454(97)00484-9
  16. Y. Saberi, S. M. Zebarjad, and G. H. Akbari, J. Alloys Compd. 484, 637 (2009). https://doi.org/10.1016/j.jallcom.2009.05.009
  17. F. B. Pickering, Towards Improvement Ductility and Toughness, (Climax Molybdenum Company, Tokyo, 1971), p. 9.
  18. P. D. Hodgson and R.K. Gibbs, ISIJ Inter. 32, 1329 (1992). https://doi.org/10.2355/isijinternational.32.1329
  19. F. B. Pickering, TISCO Silver Jubilee Jan-Oct, 105 (1980).