• Received : 2014.01.10
  • Accepted : 2014.01.28
  • Published : 2014.06.25


Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.


Riemann Zeta function;Basler problem;Bernoulli numbers;double integrals;residue theorem


  1. H. Tsumura, An elementary proof of Euler's formula for $\zeta$(2m), Amer. Math. Monthly 111 (2004), 430-431.
  2. E. C. Titchmarsh, A series inversion formula, Proc. London Math. Soc. (2) 26 (1926), 1-11.
  3. F. G. Tricomi, Sulla somma delle inverse delle terze e quinte potenze dei numeri naturali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8 47 (1969), 16-18.
  4. G. P. Tolstov, Fourier Series (translated from the Russian by Richard A. Silverman), Dover Publications, Inc., New York, 1976.
  5. R. S. Underwood, An expression for the summation $\sum_{m=1}^{n}\;m^p$, Amer. Math. Monthly 35 (1928), 424-428.
  6. G. T. Williams, A new method of evaluating $\zeta$(2n), Amer. Math. Monthly 60 (1953), 19-25.
  7. K. S. Williams, On $\sum_{n=1}^{\infty}\;1/n^{2k}$, Math. Mag. 44 (1971), 273-276.
  8. A. M. Yaglom, I. M. Yaglom, An elementary derivation of the formulas of Wallis, Leibniz and Euler for the number $\pi$ (Russian), Uspehi Mat. Nauk, 8, 5 (57) (1953), 181-187.
  9. A. M. Yaglom, I. M. Yaglom, Challenging mathematical problems with elementary solutions, Vol. II, translated by James McCawley, Jr., Holden Day, San Francisco, 1967; Dover Publications, Inc., New York, 1987.
  10. D. Zagier, Values of Zeta functions and their Applications, First European Congress of Mathematics, Vol. II (Paris, 1992) (A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler, Editors) pp. 497-512, Progress in Mathematics 120, Birkhauser, Basel, 1994.
  11. G. B. M. Zerr, Summation of series, Amer. Math. Monthly 5 (1898), 128-135.
  12. N. Y. Zhang, K. S. Williams, Application of the Hurwitz zeta function to the evaluation of certain integrals, Canad. Math. Bull. 36 (1993), 373-384.
  13. W. Zudilin, One of the numbers $\zeta$(5), $\zeta$(7), $\zeta$(9), $\zeta$(11) is irrational, Russian Math. Surveys 56 (2001), 774-776.
  14. A. Zygmund, Series, in: Encyclopaedia Britannica, 20 (1963), 363-367.
  15. E. L. Stark, Another proof of the formula $\sum_{k=1}^{\infty}\;1/k^2\;={\pi}^2/6$, Amer. Math. Monthly 76 (1969), 552-553.
  16. H. M. Srivastava, Some families of rapidly convergent series representations for the zeta functions, Taiwanese J. Math. 4 (2000), 569-599.
  17. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, and New York, 2012.
  18. H. M. Srivastava, M. L. Glasser and V. S. Adamchik, Some definite integrals associated with the Riemann Zeta function, Zeitschr. Anal. Anwendungen 19 (2000), 831-846.
  19. E. L. Stark, 1 - 1/4 + 1/9 + -... = $\pi^2$/12, Praxis Math. 12 (1970), 1-3.
  20. E. L. Stark, A new method of evaluating the sums of $\sum_{k=1}^{\infty}\;(-1)^{k+1}\;k^{-2p},\;p=1,2,3,{\cdot}{\cdot}{\cdot}$ and related series, Elem. Math. 27 (1972), 32-34.
  21. E. L. Stark, The series $\sum_{k=1}^{\infty}\;k^{-s},\;s=2,3,4{\cdot}{\cdot}{\cdot}$, once more, Math. Mag. 47 (1974), 197-202.
  22. G. Stoica, A recurrence formula in the study of the Riemann Zeta function, Stud. Cere. Mat. (3) 39 (1987), 261-264.
  23. T. J. Osler, Finding $\zeta$(2p) from a product of sines, Amer. Math. Monthly 111 (2004), 52-54.
  24. E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, New Jersey, 1975.
  25. E. H. Neville, A trigonometrical inequality, Proc. Cambridge Philos. Soc. 47 (1951), 629-632.
  26. P. K. Ojha, I. N. Singh, A discussion on two methods for finding the value of "The Riemann Zeta Function" $\zeta$(s) where s = 2, Math. Education 33(1) (1999), 24-28.
  27. I. Papadimitriou, A simple proof of the formula $\sum_{k=1}{\infty}\;k{-2}\;=\;{\pi}2/6$, Amer. Math. Monthly 80 (1973), 424-425.
  28. A. van der Poorten, A proof that Euler missed... Apery's proof of the irrational-ity of $\zeta$(3), Math. Intelligencer 1 (1979), 195-203.
  29. E. Popovici, G. Costovici, C. Popovici, The calculation of sums of harmonic series of even power, Bul. Inst. Politehn. Lasi, Sect. 1 33 (1987), 9-11.
  30. D. Ritelli, Another proof of $\zeta$(2) = $\frac{{\pi}2}{6}$ using double integrals, Amer. Math. Monthly 120(7) (2013), 642-645.
  31. T. Rivoal, La fonction zeta de Riemann prend une infinite de valeurs irra-tionnelles aux entiers impairs, C. R. Acad. Sci. Paris 331, Serie I, (2000), 267-270.
  32. N. Robbins, Revisiting an old favorite, $\zeta$(2m), Math. Mag. 72 (1999), 317-319.
  33. E. E. Scheufens, From Fourier series to rapidly convergent series for Zeta(3), Math. Mag. 84 (2011), 26-32.
  34. I. Skau and E. S. Selmer, Noen anvendelser Finn Holmes methode for beregning av $\sum_{k=1}^{\infty}\;\frac{k^2}{1}$, Nordisk Mat. Tidskr. 19 (1971), 120-124.
  35. I. Song, A recursive formula for even order harmonic series, J. Comput. Appl. Math. 21 (1988), 251-256.
  36. O. Spiess, Die Summe der reziproken Quadratzahlen, in Festschrift zum 60 Geburtstag von Prof. Dr. Andreas Speiser (L. V. Ahlfors et al., Editors), pp. 66-86, Fussli, Zurich, 1955.
  37. H. M. Srivastava, Some rapidly converging series for $\zeta$(2n + 1), Proc. Amer. Math. Soc. 127(2) (1999), 385-396.
  38. J. Choi, A. K. Rathie, H. M. Srivastava, Some hypergeometric and other evalu-ations of $\zeta$(2) and allied series, Appl. Math. Comput. 104 (1999), 101-108.
  39. J. Choi, A proof of Euler's formula $\sum_{k=1}{\infty}\;1/n2={\pi}2/6$, East Asian Math. J. 20(2) (2004), 127-129.
  40. J. Choi, Rapidly converging series for $\zeta$(2n+1) from Fourier series, Abs. Appl. Anal. Vol. 2014, Article ID 457620, 9 pages.
  41. J. Choi, A. K. Rathie, An evaluation of $\zeta$(2), Far East J. Math. Sci. 5 (1997), 393-398.
  42. W. Dunham, Euler, The Master of Us All, Mathematical Association of America, Washington, DC, 1999.
  43. J. Duoandikoetxea, A sequence of polynomials related to the evaluation of the Riemann Zeta function, Math. Mag. 80 (2007), 38-45.
  44. T. Estermann, Elementary evaluation of $\zeta$(2n), J. London Math. Soc. 22 (1947), 10-13.
  45. Euler at 300. An Appreciation. Edited by R. E. Bradley, L. A. D'Antonio, and C. E. Sandifier. Mathematical Association of America, Washington, DC, 2007.
  46. L. Euler, De summis serierum reciprocarum, Comment. acad. sci. Petropolit. 7(1734/35), (1740) 123-134 = Opera Omnia, Ser. 1 Bd. 14, 73-86, Leipzig-Berlin, 1924.
  47. L. Euler, De seriebus quibusdam considerationes, Comment. acad. sci. Petropolit. 12 (1740), (1750) 53-96 = Opera Omnia, Ser. 1 Bd. 14, 407-462.
  48. L. Euler, Introduction to Analysis of the Infinite, Book I (Translated by John D. Blanton), Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, and Tokyo, 1988.
  49. D. P. Giesy, Still another elementary proof that ${\sum}1/k2={\pi}2/6$, Math. Mag. 45(1972), 148-149.
  50. J. V. Grabiner, Who gave you the epsilon? Cauchy and the origins of rigorous calculus, Amer. Math. Monthly 90 (1983), 185-194.
  51. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Corrected and Enlarged edition prepared by A. Jeffrey), Academic Press, New York, 1980; Sixth edition, 2000.
  52. F. Beukers, E. Calabi, J. Kolk, Sums of generalized harmonic series and volumes, Nieuw Arch. Wiskd. 3 (1993), 217-224.
  53. A. Benyi, Finding the sums of harmonic series of even order, College Math. J. 36 (2005), 44-48.
  54. B. C. Berndt, Elementary evaluation of $\zeta$(2n), Math. Mag. 48 (1975), 148-154.
  55. B. C. Berndt, Ramanujan's Notebooks, Part I, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.
  56. J. M. Borwein, P. B. Borwein, Pi and the AGM, John Wiley & Sons, Inc., 1987.
  57. C. B. Boyer, A History of Mathematics, Princeton University Press, Princeton, John Wiley & Sons, Inc., 1968.
  58. J. W. Brown and R. V. Churchill, Complex Variables and Applications, eighth edition, McGraw-Hill International Edition, 2009.
  59. P. L. Butzer and M. Hauss, Integral and rapidly convergeing series representa-tions of the Dirichlet L-functions $L_1$(s) and $L_{-4}$(s), Atti Sem. Mat. Fis. Univ. Modena XL (1992), 329-359.
  60. R. Calinger, Leonhard Euler: The first St. Petersburg years (1727-1741), Historia Mathematica, 23 (1996), 121-166.
  61. L. Carlitz, A recurrence formula for $\zeta$(2n), Proc. Amer. Math. Soc. 12 (1961), 991-992.
  62. R. Chapman, Evaluating $\zeta$(2).
  63. C.-P. Chen and J. Choi, Further new evaluation of $\zeta$(2n), submitted for publication, 2013.
  64. X. Chen, Recursive formulas for $\zeta$(2k) and L(2k-1), College Math. J. 26 (1995), 372-376.
  65. M. P. Chen, An elementary evaluation of $\zeta$(2k), Chinese J. Math. 3 (1975), 11-15.
  66. Y. J. Cho, J. Choi, M. Jung, Note on an evaluation of $\zeta$(p), Indian J. Pure Appl. Math. 37(5) (2006), 259-263.
  67. B. R. Choe, An elementary proof of $\sum_{n=1}{\infty}\;1/n2={\pi}2/6$, Amer. Math. Monthly 94 (1987), 662-663.
  68. M. Dalai, How would Riemann evaluate $\zeta$(2n)?, Amer. Math. Monthly 120(2) (2013), 169-171.
  69. K. Knopp, Theory and Application of Infinite Series (second English edition, translated from the second German edition revised in accordance with the fourth German edition by R. C. H. Young), Hafner Publ. Company, New York, 1951.
  70. H. T. Kuo, A recurrence formula for $\zeta$(2n), Bull. Amer. Math. Soc. 55 (1949), 573-574.
  71. L. Lewin, Polylogarithms and Associated Functions, Elsevier (North-Holland), New York, London, and Amsterdam, 1981.
  72. T. Marshall, A short proof of ${\zeta}(2)\;=\;{\pi}2/6$, Amer. Math. Monthly 117 (2010), 352-353.
  73. Y. Matsuoka, An elementary proof of the formula $\sum_{k=1}{\infty}\;1/k2\;=\;{\pi}2/6$, Amer. Math. Monthly 68 (1961), 485-487.
  74. I. P. Natanson, Constructive Function Theory, Vol. I, Uniform Approximation, New York, 1964.
  75. M. Abramowitz, I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas; Graphs; and Mathematical Tables, Applied Mathematics Series 55, ninth printing, National Bureau of Standards, Washington, D.C., 1972.
  76. E. De Amo, M. Diaz Carrillo, J. Fernandez-Sanchez, Another proof of Euler's formula for $\zeta$(2k), Proc. Amer. Math. Soc. 139 (2011), 1441-1444.
  77. R. Apery, Irrationalite de $\zeta$(2) et $\zeta$(3), in "Journees Arithmetiques de Luminy" (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), pp. 11-13, Asterisque 61 (1979), Soc. Math. France, Paris.
  78. T. M. Apostol, Another elementary proof of Euler's formula for $\zeta$(2n), Amer. Math. Monthly 80 (1973), 425-431.
  79. T. M. Apostol, A proof that Euler missed: Evauating $\zeta$(2) the easy way, Math. Intelligencer 5 (1983), 59-60.
  80. R. Ayoub, Euler and the Zeta Function, Amer. Math. Monthly 81 (1974), 1067-1086.
  81. E. Balanzario, Metodo elemental para la evaluacion de la funcion zeta de Rie-mann en los enteros pares, Miscelanea Mat. 33 (2001), 31-41.
  82. L. Holst, A proof of Euler's infinite product for the sine, Amer. Math. Monthly 119 (2012), 518-521.
  83. J. D. Harper, Another simple proof of $1+{\frac{1}{22}+{\frac{1}{32}+{\cdot}{\cdot}{\cdot}={\frac{{\pi}2}{6}$, Amer. Math. Monthly 110 (2003), 540-541.
  84. J. Havil, Gamma: Exploring Euler's Constant, Princeton University Press, Princeton, 2003.
  85. F. Holme, En enkel beregning av $\sum_{k=1}{\infty}\;\frac{1}{k2}$, Nordisk Mat. Tidskr. 18 (1970), 91-92.
  86. R. M. Hovstad, The series $\sum_{k=1}{\infty}\;1/k{2p}$, the area of the unit circle and Leibniz' formula, Nordisk Mat. Tidskr. 20 (1972), 92-98.
  87. C. Ji and Y. Chen, Euler's formula for $\zeta$(2k), proved by induction on k, Math. Mag. 73 (2000), 154-155.
  88. D. Kalman, Six ways to sum a series, College Math. J. (1993), 402-421.
  89. H. L. Keng, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
  90. M. Kline, Euler and infinite series, Math. Mag. 56 (1983), 307-314.