DOI QR코드

DOI QR Code

THE IDEAL τ(M) AND LOCALLY CYCLIC PROJECTIVE MODULES

Cho, Yong Hwan

  • 투고 : 2014.02.17
  • 심사 : 2014.03.20
  • 발행 : 2014.06.25

초록

In this paper, we give some properties on projective modules, locally cyclic projective modules and the ideal ${\tau}(M)$.

키워드

pure submodule;locally cyclic;projective module and multiplication modules

참고문헌

  1. Z.E. Bast and P.F. Smith, Multiplication Modules, Comm. in Algebra 16(4) (1988), 755-779. https://doi.org/10.1080/00927878808823601
  2. M.M. Ali and D.J. Smith, Pure Submodules of Multiplication Modules, Beitrage Algebra Geom. 45(1) (2004), 61-74.
  3. M.M. Ali. and D.J. Smith, Some Remarks on Multiplication and Projective Mod-ules, Comm. in Algebra 32(10) (2004), 3897-3907. https://doi.org/10.1081/AGB-200027780
  4. D.D. Anderson and Yousef Al-Shanifi, Multiplication modules and the ideal $\theta$(M), Comm. in Algebra 30(7) (2002), 3383-3390. https://doi.org/10.1081/AGB-120004493
  5. A. Barnard, Multiplication Modules, Journal of Algebra 71 (1981), 174-178. https://doi.org/10.1016/0021-8693(81)90112-5
  6. C. Faith, Algebra I: Rings, Modules and Categories, Springer-Verlag, 1981
  7. Sh. Ghalandarzadeh, P. Malakoti rad, S. Shirinkam, Multiplication Modules and Cohen's Theorem, Math. Sciences 2(3) (2008), 251-260.
  8. A.G. Naum and A.S. Mijbass, Weak Cancellation Modules, Kuyngpook Math. J 37 (1997), 73-82.
  9. D.G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, 1968.
  10. M.M. Ali, Some Remarks on Multiplication and Projective Modules II, Comm. in Algebra 41 (2013), 195-214. https://doi.org/10.1080/00927872.2011.628724
  11. M.M. Ali and D.J. Smith, Locally cyclic projective Modules, New Zealand J. of Math. 34 (2005), 11-23.

피인용 문헌

  1. (p, q)-Extended Bessel and Modified Bessel Functions of the First Kind vol.72, pp.1-2, 2017, https://doi.org/10.5831/HMJ.2014.36.2.339