DOI QR코드

DOI QR Code

A GENERALIZATION OF A SEQUENTIAL SPACE AND RELATED SPACES

Hong, Woo Chorl;Kwon, Seonhee

  • Received : 2014.04.01
  • Accepted : 2014.05.21
  • Published : 2014.06.25

Abstract

In this paper, we introduce a new concept of a countably sequential space which is a generalization of a sequential space and study some properties of a countably sequential space and relations among the space and related spaces.

Keywords

sequential;countably sequential;countable tightness;Fr$\acute{e}$chet-Urysohn;AP;countably AP;WAP;WACP;sequentially compact

References

  1. A. Bella and I. V. Yaschenko, On AP and WAP spaces, Comment. Math. Univ. Carolinae 40(3) (1999), 531-536.
  2. A. V. Arhangel'skii and L. S. Pontryagin (Eds.), General Topology I, Encyclopae-dia of Mathematical Sciences, vol. 17, Springer-Verlage, Berlin, 1990.
  3. A. Bella, On spaces with the property of weak approximation by points, Comment. Math. Univ. Carolinae 35(2) (1994), 357-360.
  4. M. H. Cho, J. Kim and M. A. Moon, Examples and functions around AP and WAP spaces, Commun. Korean. Math. Soc. 23(3) (2008), 447-452. https://doi.org/10.4134/CKMS.2008.23.3.447
  5. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1970.
  6. S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. https://doi.org/10.4064/fm-57-1-107-115
  7. S. P. Franklin, Spaces in which sequences suffice II, Fund. Math. 61 (1967), 51-56. https://doi.org/10.4064/fm-61-1-51-56
  8. W. C. Hong, Generalized Frechet-Urysohn spaces, J. Korean Math. Soc. 44(2) (2007), 261-273. https://doi.org/10.4134/JKMS.2007.44.2.261
  9. W. C. Hong, On spaces in which compact-like sets are closed, and related spaces, Commun. Korean. Math. Soc. 22(2) (2007), 297-303. https://doi.org/10.4134/CKMS.2007.22.2.297
  10. W. C. Hong, On spaces which have countable tightness and related spaces, Honam Math. J. 34(2) (2012), 199-208. https://doi.org/10.5831/HMJ.2012.34.2.199
  11. J. Penlant, M. G. Tkachenko, V. V. Tkachuk, and R. G. Wilson, Pseudocompact Whyburn spaces need not be Frechet, Proc. Amer. Math. Soc. 131(10) (2002), 3257-3265.
  12. L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Springer-Verlag, Berlin, 1978.
  13. V. V. Tkachuk and I. V. Yaschenko, Almost closed sets and topologies they de-termine, Comment. Math. Univ. Carolinae 42(2) (2001), 395-405.
  14. J. E. Vaughan, Countably compact and sequentially compact spaces, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, New York, Oxford (1984), 569-602.
  15. A. Wilansky, Topology for Analysis, Ginn and Company, 1970.

Cited by

  1. A NOTE ON SPACES DETERMINED BY CLOSURE-LIKE OPERATORS vol.32, pp.3, 2016, https://doi.org/10.7858/eamj.2016.027

Acknowledgement

Supported by : Pusan National University