DOI QR코드

DOI QR Code

Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets

  • Hu, Yuanliang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Dun, Yaohao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Li, Shenao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhao, Shumiao (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Peng, Nan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liang, Yunxiang (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
  • Received : 2013.11.21
  • Accepted : 2014.03.25
  • Published : 2014.08.01

Abstract

This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight $7.14{\pm}0.63$ kg) weaned at $26{\pm}2$ days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen) for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC), basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC) and basal diet supplemented with $2{\times}10^9$ (L), $4{\times}10^9$ (M) and $20{\times}10^9$ (H) CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05), and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05). The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05), and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05). These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets.

Keywords

Bacillus subtilis;Bacterial Community;Diarrhea;Growth Performance;Lactobacillus;Weaned Piglets

References

  1. Konstantinov, S. R., A. A. Awati, B. A. Williams, B. G. Miller, P. Jones, C. R. Stokes, A. D. L. Akkermans, H. Smidt, and W. M. De Vos. 2006. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol. 8: 1191-1199. https://doi.org/10.1111/j.1462-2920.2006.01009.x
  2. Lee, D. H., Y. G. Zo, and S. J. Kim. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl. Environ. Microbiol. 62:3112-3120.
  3. Lee, K. W., S. H. Lee, H. S. Lillehoj, G. X. Li, S. I. Jang, U. S. Babu, M. S. Park, D. K. Kim, E. P. Lillehoj, A. P. Neumann, T. G. Rehberger, and G. R. Siragusa. 2010. Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poult. Sci. 89:203-216. https://doi.org/10.3382/ps.2009-00418
  4. Lee, S. H., S. L. Ingale, J. S. Kim, K. H. Kim, A. Lokhande, E. K. Kim, I. K. Kwon, Y. H. Kim, and B. J. Chae. 2014. Effects of dietary supplementation with Bacillus subtilis LS 1-2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Anim. Feed Sci. Technol. 188:102-110. https://doi.org/10.1016/j.anifeedsci.2013.12.001
  5. Li, M., J. Gong, M. Cottrill, H. Yu, C. de Lange, J. Burton, and E. Topp. 2003. Evaluation of $QIAamp^{(R)}$ DNA Stool Mini Kit for ecological studies of gut microbiota. J. Microbiol. Methods 54: 13-20. https://doi.org/10.1016/S0167-7012(02)00260-9
  6. Li, Z., G. Yi, J. Yin, P. Sun, D. Li, and C. Knight. 2008. Effects of organic acids on growth performance, gastrointestinal pH, intestinal microbial populations and immune responses of weaned pigs. Asian Australas. J. Anim. Sci. 21:252-261. https://doi.org/10.5713/ajas.2008.70089
  7. Lopez-Siles, M., T. M. Khan, S. H. Duncan, H. J. M. Harmsen, L. J. Garcia-Gil, and H. J. Flint. 2012. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl. Environ. Microbiol. 78:420-428. https://doi.org/10.1128/AEM.06858-11
  8. Fu, C. J., J. N. Carter, Y. Li, J. H. Porter, and M. S. Kerley. 2006. Comparison of agar plate and real-time PCR on enumeration of Lactobacillus, Clostridium perfringens and total anaerobic bacteria in dog faeces. Lett. Appl. Microbiol. 42:490-494. https://doi.org/10.1111/j.1472-765X.2006.01893.x
  9. Giang, H. H., T. Q. Viet, B. Ogle, and J. E. Lindberg. 2012. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest. Sci. 143:132-141. https://doi.org/10.1016/j.livsci.2011.09.003
  10. Gong, J., H. Yu, T. Liu, M. Li, W. Si, C. F. M. De lange, and C. Dewey. 2008. Characterization of ileal bacterial microbiota in newly-weaned pigs in response to feeding lincomycin, organic acids or herbal extract. Livest. Sci. 116:318-322. https://doi.org/10.1016/j.livsci.2008.01.001
  11. Han, K. S., P. Balan, F. Molist Gasa, and M. Boland. 2011. Green kiwifruit modulates the colonic microbiota in growing pigs. Lett. Appl. Microbiol. 52:379-385. https://doi.org/10.1111/j.1472-765X.2011.03012.x
  12. Han, W., X. L. Zhang, D. W. Wang, L. Y. Li, G. L. Liu, A. K. Li, and Y. X. Zhao. 2013. Effects of microencapsulated Enterococcus fecalis CG1.0007 on growth performance, antioxidation activity, and intestinal microbiota in broiler chickens. J. Anim. Sci. 91:4374-4382. https://doi.org/10.2527/jas.2012-5956
  13. Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813-835. https://doi.org/10.1016/j.femsre.2004.12.001
  14. Hu, Y., X. Yang, J. Qin, N. Lu, G. Cheng, N. Wu, Y. Pan, J. Li, L. Zhu, and X. Wang et. al. 2013. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Natr. Commun. 4. Article number 2151.
  15. Jones, S. E. and K. L. Knight. 2012. Bacillus subtilis-mediated protection from Citrobacter rodentium-associated enteric disease requires esph and functional flagella. Infect. Immun. 80:710-719. https://doi.org/10.1128/IAI.05843-11
  16. Kim, Y. I., Y. H. Lee, K. H. Kim, Y. K. Oh, Y. H. Moon, and W. S. Kwak. 2012. Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian Australas. J. Anim. Sci. 25:1575-1581. https://doi.org/10.5713/ajas.2012.12251
  17. Alexopoulos, C., I. E. Georgoulakis, A. Tzivara, S. K. Kritas, A. Siochu, and S. C. Kyriakis. 2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 88: 381-392. https://doi.org/10.1111/j.1439-0396.2004.00492.x
  18. Aliakbarpour, H. R., M. Chamani, G. Rahimi, A. A. Sadeghi, and D. Qujeq. 2012. The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian Australas. J. Anim. Sci. 25:1285-1293. https://doi.org/10.5713/ajas.2012.12110
  19. ben Omar, N. and F. Ampe. 2000. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl. Environ. Microbiol. 66:3664-3673. https://doi.org/10.1128/AEM.66.9.3664-3673.2000
  20. Chen, W., X. Z. Zhu, J. P. Wang, Z. X. Wang, and Y. Q. Huang. 2013. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae fermented liquid feed on growth performance, relative organ weight, intestinal microflora, and organ antioxidant status in Landes geese. J. Anim. Sci. 91:978-985. https://doi.org/10.2527/jas.2012-5148
  21. Cui, C., C. J. Shen, G. Jia, and K. N. Wang. 2013. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 12: 1766-1776. https://doi.org/10.4238/2013.May.23.1
  22. Eckburg, P. B., E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson, and D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308:1635-1638. https://doi.org/10.1126/science.1110591
  23. Zoetendal, E. G., A. D. L. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854-3859.
  24. Tsukahara, T., T. Tsuruta, N. Nakanishi, C. Hikita, M. Mochizuki, and K. Nakayama. 2013. The preventive effect of Bacillus subtilus strain DB9011 against experimental infection with enterotoxcemic Escherichia coli in weaning piglets. Anim. Sci. J. 84:316-321. https://doi.org/10.1111/asj.12003
  25. van Orsouw, N., D. Li, and J. Vijg. 1997. Denaturing gradient gel electrophoresis (DGGE) increases resolution and informativity of Alu-directed inter-repeat PCR. Mol. Cell. Probes 11:95-101. https://doi.org/10.1006/mcpr.1996.0089
  26. Vanhoutte, T., V. De Preter, E. De Brandt, K. Verbeke, J. Swings, and G. Huys. 2006. Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl. Environ. Microbiol. 72: 5990-5997. https://doi.org/10.1128/AEM.00233-06
  27. Vondruskova, H., R. Slamova, M. Trckova, Z. Zraly, and I. Pavlik. 2010. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet. Med-Czech. 55: 199-224.
  28. Walter, J., G. W. Tannock, A. Tilsala-Timisjarvi, S. Rodtong, D. M. Loach, K. Munro, and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66:297-303. https://doi.org/10.1128/AEM.66.1.297-303.2000
  29. Wang, S. P., L. Yang, X. S. Tang, L. C. Cai, G. Liu, X. F. Kong, F. Blachier, and Y. L. Yin. 2011. Dietary supplementation with high-dose Bacillus subtilis or Lactobacillus reuteri modulates cellular and humoral immunities and improves performance in weaned piglets. J. Food Agric. Environ. 9:181-187.
  30. Willis, W. and L. Reid. 2008. Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poult. Sci. 87:606-611. https://doi.org/10.3382/ps.2006-00458
  31. Zhang, Z. F., T. X. Zhou, X. Ao, and I. H. Kim. 2012. Effects of $\beta$- glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize-soybean meal based diets. Livest. Sci. 150:419-424. https://doi.org/10.1016/j.livsci.2012.10.003
  32. Sen, S., S. L. Ingale, J. S. Kim, K. H. Kim, Y. W. Kim, C. Khong, J. D. Lohakare, E. K. Kim, H. S. Kim, I. K. Kwon, and B. J. Chae. 2011. Effect of supplementation of Bacillus subtilis LS 1-2 grown on citrus-juice waste and corn-soybean meal substrate on growth performance, nutrient retention, caecal microbiology and small intestinal morphology of broilers. Asian Australas. J. Anim. Sci. 24:1120-1127. https://doi.org/10.5713/ajas.2011.10443
  33. Sindhu, S. C. and N. Khetarpaul. 2003. Effect of feeding probiotic fermented indigenous food mixture on serum cholesterol levels in mice. Nutr. Res. 23:1071-1080. https://doi.org/10.1016/S0271-5317(03)00087-3
  34. Smillie, C. S., M. B. Smith, J. Friedman, O. X. Cordero, L. A. David, and E. J. Alm. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241-244. https://doi.org/10.1038/nature10571
  35. Sokol, H., B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermudez- Humaran, J.-J. Gratadoux, S. Blugeon, C. Bridonneau, J.-P. Furet, and G. Corthier et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 105:16731-16736. https://doi.org/10.1073/pnas.0804812105
  36. Srinivasan, S., A. Aslan, I. Xagoraraki, E. Alocilja, and J. B. Rose. 2011. Escherichia coli, Enterococci, and Bacteroides thetaiotaomicron qPCR signals through wastewater and septage treatment. Water Res. 45: 2561-2572. https://doi.org/10.1016/j.watres.2011.02.010
  37. Taras, D., W. Vahjen, M. Macha, and O. Simon. 2005. Response of performance characteristics and fecal consistency to longlasting dietary supplementation with the probiotic strain Bacillus cereus var. toyoi to sows and piglets. Arch. Anim. Nutr. 59:405-417. https://doi.org/10.1080/17450390500353168
  38. Taras, D., W. Vahjen, and O. Simon. 2007. Probiotics in pigs - modulation of their intestinal distribution and of their impact on health and performance. Livest. Sci. 108:229-231. https://doi.org/10.1016/j.livsci.2007.01.075
  39. NRC. 1998. Nutrient Requirements of Swine. 10th ed. National Academies Press, Washington, DC, USA.
  40. Petersson, A., K. J. Domig, P. Nagel, W. Zollitsch, W. Hagmuller, and W. Kneifel. 2009. Denaturing gradient gel electrophoresis (DGGE)-based monitoring of intestinal Lactobacilli and Bifidobacteria of pigs during a feeding trial. Arch. Anim. Nutr. 63:112-126. https://doi.org/10.1080/17450390902733959
  41. Pieper, R., P. Janczyk, V. Urubschurov, U. Korn, B. Pieper, and W. B. Souffrant. 2009. Effect of a single oral administration of Lactobacillus plantarum DSMZ 8862/8866 before and at the time point of weaning on intestinal microbial communities in piglets. Int. J. Food Microbiol. 130:227-232. https://doi.org/10.1016/j.ijfoodmicro.2009.01.026
  42. Pryde, S. E., S. H. Duncan, G. L. Hold, C. S. Stewart, and H. J. Flint. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217:133-139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x
  43. Ricca, D. M., C. J. Ziemer, and B. J. Kerr. 2010. Changes in bacterial communities from swine feces during continuous culture with starch. Anaerobe 16:516-521. https://doi.org/10.1016/j.anaerobe.2010.03.010
  44. Sen, S., S. L. Ingale, Y. W. Kim, J. S. Kim, K. H. Kim, J. D. Lohakare, E. K. Kim, H. S. Kim, M. H. Ryu, I. K. Kwon, and B. J. Chae. 2012. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res. Vet. Sci. 93: 264-268. https://doi.org/10.1016/j.rvsc.2011.05.021
  45. Madden, U. A., G. D. Osweiler, L. Knipe, G. W. Beran, and D. C. Beitz. 1999. Effects of Eubacterium coprostanoligenes and Lactobacillus on pH, lipid content, and cholesterol of fermented pork and mutton sausage-type mixes. J. Food Sci. 64:903-908. https://doi.org/10.1111/j.1365-2621.1999.tb15937.x
  46. McCann, K. S. 2000. The diversity-stability debate. Nature 405: 228-233. https://doi.org/10.1038/35012234
  47. Nakano, M. M. and P. Zuber. 1998. Anaerobic growth of a "strict aerobe" (Bacillus subtilis). Annu. Rev. Microbiol. 52:165-190. https://doi.org/10.1146/annurev.micro.52.1.165

Cited by

  1. 日粮中添加枯草芽孢杆菌B10 对高脂日粮诱导的小鼠脂肪代谢及抗氧化的影响 vol.16, pp.6, 2015, https://doi.org/10.1631/jzus.B1400342
  2. Probiotic isolates from unconventional sources: a review vol.58, pp.1, 2016, https://doi.org/10.1186/s40781-016-0108-2
  3. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production vol.101, pp.7, 2017, https://doi.org/10.1007/s00253-016-8032-4
  4. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period vol.56, pp.4, 2017, https://doi.org/10.1007/s00394-016-1223-z
  5. Effects of Astragalus membranaceus fiber on growth performance, nutrient digestibility, microbial composition, VFA production, gut pH, and immunity of weaned pigs pp.20458827, 2018, https://doi.org/10.1002/mbo3.712
  6. MIYAIRI 588 on broiler and piglet zootechnical performance and prevention of necrotic enteritis vol.89, pp.6, 2018, https://doi.org/10.1111/asj.13006
  7. probiotics: an alternative to antibiotics for livestock production vol.124, pp.6, 2018, https://doi.org/10.1111/jam.13690