DOI QR코드

DOI QR Code

Effects of L-proline on the Growth Performance, and Blood Parameters in Weaned Lipopolysaccharide (LPS)-challenged Pigs

  • Kang, Ping (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Zhang, Lili (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Hou, Yongqing (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Ding, Binying (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Yi, Dan (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Wang, Lei (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Zhu, Huiling (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Liu, Yulan (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Yin, Yulong (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University) ;
  • Wu, Guoyao (Department of Animal Science, Texas A & M University, College Station)
  • Received : 2013.12.14
  • Accepted : 2014.04.22
  • Published : 2014.08.01

Abstract

This trail was conducted to study the effect of L-proline on the growth performance, and blood parameter in the weaned lipopolysaccharide (LPS)-challenged pigs. Thirty six pigs ($9.13{\pm}0.85$ kg) were assigned randomly to dietary treatments in a $2{\times}3$ factorial arrangement in a 20-d growth assay. Factors were intraperitoneal injection with saline or LPS, and three dietary L-proline supplement levels (0%, 0.5%, or 1.0%). On d 10, blood samples were collected at 3 h after LPS (100 ${\mu}g$ LPS/kg body weight [BW]) or saline injection. On d 20 of the trial, all pigs were orally administrated D-xylose (0.1 g/kg BW) at 2 h, and blood samples were collected at 3 h after LPS or saline injection. As a result, dietary supplementation with 0.5% proline had a tendency to increase average daily gain (ADG) in piglets during d 10 to 20 (p = 0.088). Without LPS challenge, dietary supplementation with 1.0% proline had no effect on growth hormone (GH) concentrations on d 10 (p>0.05), but decreased it after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for GH concentrations on d 10 (p<0.05). Dietary supplementation with 1.0% proline decreased glucagon concentration on d 10 after LPS challenge (p<0.05). In addition, dietary supplementation with proline increased superoxide dismutase (SOD) activity significantly on d 10 and 20 (p<0.05), and 1.0% proline increased heat shock proteins-70 concentration on d 10 (p<0.05). Moreover, proline supplementation increased diamine oxidase (DAO) concentrations after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for DAO (p<0.05). Furthermore, dietary supplementation with 1.0% proline increased the D-xylose level when no LPS challenge (p<0.05). These results indicate that proline supplementation could improve growth performance, increase SOD activities, and has a positive effect on the gastrointestinal tract digestibility in early weaned pigs.

Keywords

L-proline;Growth Performance;Blood Parameters;Gastrointestinal Tract Digestibility;Early Weaned Pigs;Lipopolysaccharide

References

  1. Wang, J., L. Chen, P. Li, X. Li, H. Zhou, F. Wang, D. Li, Y. Yin, and G. Wu. 2008. Gene expression is altered in piglets small intestine by weaning and dietary glutamine supplementation. J. Nutr. 138:1025-1032.
  2. Wei, J. W., R. J. Carroll, K. K. Harden, and G. Wu. 2012. Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031-2035. https://doi.org/10.1007/s00726-011-0924-0
  3. Wu, G. 1997. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 272:G1382-1390.
  4. Wu, G., D. A. Knabe, N. E. Flynn, W. Yan, and S. P. Flynn. 1996. Arginine degradation in developing porcine enterocytes. Am. J. Physiol. Gastrointest. Liver. Physiol. 271:G913-G919.
  5. Wu, G., F. W. Bazer, R. C. Burghardt, G. A. Johnson, S. W. Kim, D. A. Knabe, P. Li, X. Li, J. R. McKnight, M. C. Satterfield, and T. E. Spencer. 2011. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40: 1053-1063. https://doi.org/10.1007/s00726-010-0715-z
  6. Wu, G., F. W. Bazer, S. Datta, G. A. Johnson, P. Li, M. C. Satterfield, and T. E. Spencer. 2008. Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691-702. https://doi.org/10.1007/s00726-008-0052-7
  7. Wu, G. Y., N. E. Flynn, and D. A. Knabe. 2000. Enhanced intestinal synthesis of polyamines from proline in cortisoltreated piglets. Am. J. Physiol. Endocrinol. Metab. 279:E395-E402.
  8. Namikawa, T., I. Fukudome, H. Kitagawa, T. Okabayashi, M. Kobayashi, and K. Hanazaki. 2012. Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology 82: 147-152. https://doi.org/10.1159/000336799
  9. NRC. 1998. Nutrient Requirements of Swine. 10th ed. National Academic Press, Washington, DC, USA.
  10. Ohyama, N., H. Sato, and T. E. Tanaka. 2001. Epidermal growth factor enhances lipopolysaccharide-induced procoagulant activity on the cell surface of endothelial cells. Blood Coagul. Fibrinolysis 12:385-389. https://doi.org/10.1097/00001721-200107000-00008
  11. Phang, J. M. and W. Liu. 2012. Proline metabolism and cancer. Front. Biosci. 17:1835-1845. https://doi.org/10.2741/4022
  12. Roecker, R., G. M. Junges, D. D. de Lima, J. G. da Cruz, A. T. Wyse, and D. D. Dal Magro. 2012. Proline alters antioxidant enzyme defenses and lipoperoxidation in the erythrocytes and plasma of rats: in vitro and in vivo studies. Biol. Trace Elem. Res. 147:172-179. https://doi.org/10.1007/s12011-011-9276-6
  13. Samuels, S. E., H. L. Aarts, and R. O. Ball. 1989. Effect of dietary proline on proline metabolism in the neonatal pig. J. Nutr. 119: 1900-1906.
  14. Sorrells, A. D., S. D. Eicher, K. A. Scott, M. J. Harris, E. A. Pajor, D. C. Jr. Lay, and B. T. Richert. 2006. Postnatal behavioral and physiological responses of piglets from gilts housed individually or in groups during gestation. J. Anim. Sci. 84: 757-766.
  15. Soto, L., A. I. Martin, S. Millan, E. Vara, and A. Lopez-Calderon. 1998. Effects of endotoxin lipopolysaccharide administration on the somatotropic axis. J. Endocrinol. 159:239-246. https://doi.org/10.1677/joe.0.1590239
  16. Suffredini, A. F., G. Fantuzzi, R. Badolato, J. J. Oppenheim, and N. P. O'Grady. 1999. New insights into biology of the acute phase response. J. Clin. Immunol. 19:203-214. https://doi.org/10.1023/A:1020563913045
  17. Gyr, K., R. H. Wolf, and O. Felsenfeld. 1974. Intestinal absorption of D-xylose and folic acid in protein-deficient patas monkeys (Erythrocebus patas). Am. J. Clin. Nutr. 27:350-354.
  18. Hosoda, N., M. Nishi, M. Nakagawa, Y. Hiramatsu, K. Hioki, and M. Yamamoto. 1989. Structural and functional alterations in the gut of parenterally or enterally fed rats. J. Surg. Res. 47: 129-133. https://doi.org/10.1016/0022-4804(89)90076-0
  19. Kang, P., H. L. Xiao, Y. Q. Hou, B. Y. Ding, Y. L. Liu, H. L. Zhu, Q. Z. Hu, Y. Hu, and Y. L. Yin. 2010. Effects of astragalus polysaccharides, achyranthes bidentata polysaccharides, and acantbepanax senticosus saponin on the performance and immunity in weaned pigs. Asian Australas. J. Anim. Sci. 23: 750-756. https://doi.org/10.5713/ajas.2010.90526
  20. Kaplan, M., E. A. Mutlu, M. Benson, J. Z. Fields, A. Banan, and A. Keshavarzian. 2007. Use of herbal preparations in the treatment of oxidant-mediated inflammatory disorders. Complement. Ther. Med. 15:207-216. https://doi.org/10.1016/j.ctim.2006.06.005
  21. Lay, D. C. Jr., H. G. Kattesh, J. E. Cunnick, M. J. Daniels, G. Kranendonk, K. A. McMunn, M. J. Toscano, and M. P. Roberts. 2011. Effect of prenatal stress on subsequent response to mixing stress and a lipopolysaccharide challenge in pigs. J. Anim. Sci. 89:1787-1794. https://doi.org/10.2527/jas.2010-3612
  22. Mansoori, B., H. Nodeh, M. Modirsanei, S. Rahbari, and P. Aparnak. 2009. D-Xylose absorption test: A tool for the assessment of the effect of anticoccidials on the intestinal absorptive capacity of broilers during experimental coccidiosis. Anim. Feed Sci. Technol. 148:301-308. https://doi.org/10.1016/j.anifeedsci.2008.04.009
  23. Moroi, Y., M. Mayhew, J. Trcka, M. H. Hoe, Y. Takechi, F. U. Hartl, J. E. Rothman, and A. N. Houghton. 2000. Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc. Natl. Acad. Sci. USA. 97:3485-3490. https://doi.org/10.1073/pnas.97.7.3485
  24. Baker, D. H. 1977. Amino acid nutrition of the chick. In: Advances in Nutrition Research (Ed. H. H. Draper), pp. 299-335, Plenum, New York, NY, USA.
  25. Ball, R. O., J. L. Atkinson, and H. S. Bayley. 1986. Proline as an essential amino acid for the young pig. Br. J. Nutr. 55:659-668. https://doi.org/10.1079/BJN19860072
  26. Bertolo, R. F., J. A. Brunton, P. B. Pencharz, and R. O. Ball. 2003. Arginine, ornithine, and proline interconversion is dependent on small intestinal metabolism in neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 284:E915-E922. https://doi.org/10.1152/ajpendo.00269.2002
  27. Buege, J. A. and S. D. Aust. 1978. Microsomal lipid peroxidation. Methods. Enzymol. 52:302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
  28. Buonocore, G. and F. Groenendaal. 2007. Anti-oxidant strategies. Semin. Fetal Neonatal Med. 12:287-295. https://doi.org/10.1016/j.siny.2007.01.020
  29. Dignass, A. U. and A. Sturm. 2001. Peptide growth factors in the intestine. Eur. J. Gastroenterol. Hepatol. 13:763-770. https://doi.org/10.1097/00042737-200107000-00002
  30. El Darawany, A. A. and H. M. Farghaly. 1999. Some blood biochemical as indicator to improve productive and reproductive performance in rabbit population. In: 2. International Conference on Rabbit Production in Hot Climates (A. Testik and M. Baselga). Zaragoza: CIHEAM, p. 139-145.
  31. El Golli-Bennour, E. and H. Bacha. 2011. Hsp70 expression as biomarkers of oxidative stress, mycotoxins' exploration. Toxicology 287:1-7. https://doi.org/10.1016/j.tox.2011.06.002

Cited by

  1. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner vol.113, pp.07, 2015, https://doi.org/10.1017/S0007114514004310
  2. A novel, clinically relevant use of a piglet model to study the effects of anesthetics on the developing brain vol.5, pp.1, 2016, https://doi.org/10.1186/s40169-015-0079-9
  3. N-Acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways vol.49, pp.12, 2017, https://doi.org/10.1007/s00726-017-2389-2
  4. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models vol.49, pp.8, 2017, https://doi.org/10.1007/s00726-017-2450-1
  5. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease vol.9, pp.9, 2017, https://doi.org/10.3390/nu9090920
  6. Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/9171905
  7. Dietary Supplementation with Oleum Cinnamomi Improves Intestinal Functions in Piglets vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051284