Identification of Differentially Expressed Proteins in Liver in Response to Subacute Ruminal Acidosis (SARA) Induced by High-concentrate Diet

  • Jiang, X.Y. (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Ni, Y.D. (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Zhang, S.K. (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Zhang, Y.S. (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Shen, X.Z. (College of Veterinary Medicine, Nanjing Agricultural University)
  • Received : 2013.11.16
  • Accepted : 2014.03.04
  • Published : 2014.08.01


The aim of this study was to evaluate protein expression patterns of liver in response to subacute ruminal acidosis (SARA) induced by high-concentrate diet. Sixteen healthy mid-lactating goats were randomly divided into 2 groups and fed either a high-forage (HF) diet or a high-concentrate (HC) diet. The HC diet was expected to induce SARA. After ensuring the occurrence of SARA, liver samples were collected. Proteome analysis with differential in gel electrophoresis technology revealed that, 15 proteins were significantly modulated in liver in a comparison between HF and HC-fed goats. These proteins were found mainly associated with metabolism and energy transfer after identified by matrix-assisted laser desorption ionization/time of flight. The results indicated that glucose, lipid and protein catabolism could be enhanced when SARA occurred. It prompted that glucose, lipid and amine acid in the liver mainly participated in oxidation and energy supply when SARA occurred, which possibly consumed more precursors involved in milk protein and milk fat synthesis. These results suggest new candidate proteins that may contribute to a better understanding of the mechanisms that mediate liver adaptation to SARA.


Liver;Metabolism;High-concentrate;Subacute Ruminal Acidosis [SARA]


  1. Schenkman, J. B. and I. Jansson. 2003. The many roles of cytochrome b5. Pharmacol. Ther. 97:139-152.
  2. Schoonjans, K., M. Watanabe, H. Suzuki, A. Mahfoudi, G. Krey, W. Wahli, P. Grimaldi, B. Staels, T. Yamamoto, and J. Auwerx. 1995. Induction of the acyl-coenzyme a synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the c promoter. J. Biol. Chem. 270:19269-19276.
  3. Stone, W. 2004. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J. Dairy Sci. 87:13-26.
  4. Wang, W. A., J. Groenendyk, and M. Michalak. 2012. Calreticulin signaling in health and disease. Int. J. Biochem. Cell Biol. 44: 842-846.
  5. Yan, Q., J. E. Murphy-Ullrich, and Y. Song. 2011. Molecular and structural insight into the role of key residues of thrombospondin-1 and calreticulin in thrombospondin-1- calreticulin binding. Biochemistry 50:566-573.
  6. Izumi, T. and M. Yamaguchi. 2004. Overexpression of regucalcin suppresses cell death in cloned rat hepatoma h4-ii-e cells induced by tumor necrosis factor-alpha or thapsigargin. J. Cell. Biochem. 92:296-306.
  7. Jianzhen, H., M. Haitian, Y. Liming, and Z. Sixiang. 2007. Developmental changes of protein profiles in the embryonic sanhuang chicken liver. J. Vet. Med. A. Physiol. Pathol. Clin. Med. 54:464-469.
  8. Kleen, J. L., G. A. Hooijer, J. Rehage, and J. P. Noordhuizen. 2003. Subacute ruminal acidosis (sara): A review. J. Vet. Med. A. Physiol. Pathol. Clin. Med. 50:406-414.
  9. Kjeldgaard, M. Nissen, P. Thirup, and S. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1:35-50.
  10. Krause, K. M. and G. R. Oetzel. 2005. Inducing subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 88:3633-3639.
  11. Lapierre, H. and G. E. Lobley. 2001. Nitrogen recycling in the ruminant: A review. J. Dairy Sci. 84:E223-E236.
  12. Nocek, J. E. 1997. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 80:1005-1028.
  13. Obeid, M., A. Tesniere, T. Panaretakis, R. Tufi, N. Joza, P. van Endert, F. Ghiringhelli, L. Apetoh, N. Chaput, C. Flament, E. Ullrich, S. de Botton, L. Zitvogel, and G. Kroemer. 2007. Ectocalreticulin in immunogenic chemotherapy. Immunol. Rev. 220:22-34.
  14. Palmer, J. L., R. H. Abeles. 1979. The mechanism of action of Sadenosylhomocysteinase. J. Biol. Chem. 254:1217-1226.
  15. Porter, T. D. 2002. The roles of cytochrome b5 in cytochrome p450 reactions. J. Biochem. Mol. Toxicol. 16:311-316.
  16. Sauvant, D., F. Meschy, and D. Mertens. 1999. Components of ruminal acidosis and acidogenic effects of diets. Prod. Anim. 12:49-60.
  17. Candiano, G., M. Bruschi, L. Musante, L. Santucci, G. M. Ghiggeri, B. Carnemolla, P. Orecchia, L. Zardi, and P. G. Righetti. 2004. Blue silver: A very sensitive colloidal coomassie g-250 staining for proteome analysis. Electrophoresis 25:1327-1333.
  18. Chen, J., X. Tang, Y. Zhang, H. Ma, and S. Zou. 2010. Effects of maternal treatment of dehydroepiandrosterone (dhea) on serum lipid profile and hepatic lipid metabolism-related gene expression in embryonic chickens. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 155:380-386.
  19. DeVries, T. J., K. A. Beauchemin, F. Dohme, and K. S. Schwartzkopf-Genswein. 2009. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feeding, ruminating, and lying behavior. J. Dairy Sci. 92:5067-5078.
  20. Dijkstra, J., H. Boer, J. Van Bruchem, M. Bruining, and S. Tamminga. 1993. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, ph and rumen liquid volume. Br. J. Nutr. 69:385-396.
  21. Dragomir, C., D. Sauvant, J. L. Peyraud, S. Giger-Reverdin, and B. Michalet-Doreau. 2008. Meta-analysis of 0 to 8 h post-prandial evolution of ruminal ph. Animal. 2:1437-1448.
  22. Fairfield, A. M., J. C. Plaizier, T. F. Duffield, M. I. Lindinger, R. Bagg, P. Dick, and B. W. McBride. 2007. Effects of prepartum administration of a monensin controlled release capsule on rumen ph, feed intake, and milk production of transition dairy cows. J. Dairy Sci. 90:937-945.
  23. Fella, K., M. Gluckmann, J. Hellmann, M. Karas, P. J. Kramer, and M. Kroger. 2005. Use of two-dimensional gel electrophoresis in predictive toxicology: Identification of potential early protein biomarkers in chemically induced hepatocarcinogenesis. Proteomics 5:1914-1927.
  24. Gozho, G. N., J. C. Plaizier, D. O. Krause, A. D. Kennedy, and K. M. Wittenberg. 2005. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 88:1399-1403.
  25. AlZahal, O., B. Rustomo, N. E. Odongo, T. F. Duffield, and B.W. McBride. 2007. Technical note: A system for continuous recording of ruminal ph in cattle. J. Anim. Sci. 85:213-217.
  26. Beauchemin, K. A., W. Z. Yang, and L. M. Rode. 2001. Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. J. Anim. Sci. 79:1925-1936.
  27. Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590.
  28. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
  29. Brossard, L., C. Martin, and B. Michalet-Doreau. 2003. Ruminal fermentative parameters and blood acido-basic balance changes during the onset and recovery of induced latent acidosis in sheep. Anim. Res. 52:513-530.

Cited by

  1. Epigenetic mechanisms contribute to decrease stearoyl-CoA desaturase 1 expression in the liver of dairy cows after prolonged feeding of high-concentrate diet vol.101, pp.3, 2018,
  2. Response of rumen microbiota, and metabolic profiles of rumen fluid, liver and serum of goats to high-grain diets pp.1751-732X, 2019,