DOI QR코드

DOI QR Code

Isolation and Characterization of Temperate Phages in Enterococcus faecium from Sprouts

새싹채소 유래 Enterococcus faecium으로부터 Temperate Phage의 분리와 특성

  • Lee, Young-Duck (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
  • 이영덕 (가천대학교 식품생물공학과) ;
  • 박종현 (가천대학교 식품생물공학과)
  • Received : 2013.12.12
  • Accepted : 2014.01.27
  • Published : 2014.06.30

Abstract

To analyze the characteristics of bacteriophages in Enterococcus faecium, D-19 and F6 phages were induced from five E. faecium isolated from sprouts by the treatment with mitomycin C. The bacteriophages of D-19 and F-6 had long, non-contractile tails and icosahedral heads, and were members of Siphoviridae family. As the host spectrum, D-19 phage lysed five out of 55 strains of E. faecium, whereas F6 phage lysed only three strains. Both D-19 and F6 phages displayed similar and high stabilities against ethanol and pH capable of resisting the exposure to 100% ethanol and pH 4.

Keywords

Enterococcus faecium;temperate phage;Siphoviridae;host spectrum;stability

Acknowledgement

Supported by : 농촌진흥청

References

  1. Minakhin L, Goel M, Berdygulova Z, Ramanculov E, Florens L, Glazko G, Karamychev VN, Slesarev AI, Kozyavkin SA, Khromov I, Ackermann HW, Washburn M, Mushegian A, Severinov K. Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: siphoviruses with triplex-forming sequences and the longest known tails. J. Mol. Biol. 378: 468-480 (2008) https://doi.org/10.1016/j.jmb.2008.02.018
  2. Hendrix RW. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506-511(2003) https://doi.org/10.1016/j.mib.2003.09.004
  3. Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni Adel L. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front. Microbiol. 2: 282 (2012)
  4. Jo czyk E, Klak M, Miedzybrodzki R, Gorski A. The influence of external factors on bacteriophages. Folia Microbiol. 56: 191-200 (2011) https://doi.org/10.1007/s12223-011-0039-8
  5. Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ. Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J. Bacteriol. 192: 1122-1130 (2010) https://doi.org/10.1128/JB.01293-09
  6. Manson JM, Hancock LE, Gilmore MS. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. P. Natl. Acad. Sci. USA 107: 12269-12274 (2010) https://doi.org/10.1073/pnas.1000139107
  7. Lam MMC, Seemann T, Bulach DM, Gladman SL, Chen H, Haring V, Moore RJ, Ballard S, Grayson ML, Johnson PDR, Howden BP, Stinear TP. Comparative analysis of the first complete Enterococcus faecium genome. J. Bacteriol. 194: 2334-2341 (2012) https://doi.org/10.1128/JB.00259-12
  8. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. Bacteriophage-mediated transduction of antibiotic resistance in Enterococci. Lett. Appl. Microbiol. 52: 559-564 (2011) https://doi.org/10.1111/j.1472-765X.2011.03043.x
  9. Campbell A. The future of bacteriophage biology. Nat. Rev. Genet. 4: 471-477 (2003) https://doi.org/10.1038/nrg1089
  10. Leclercq R, Dutka-Malen S, Brisson-Noel A, Molinas C, Derlot E, Arthur M, Duval J, Courvalin P. Resistance of Enterococci to aminoglycosides and glycopeptides. Clin. Infect. Dis. 15: 495-501 (1992) https://doi.org/10.1093/clind/15.3.495
  11. Clewell DB. Conjugative transposons and the dissemination of antibiotic resistance in Streptococci. Am. Rev. Microbiol. 40: 635-659 (1986) https://doi.org/10.1146/annurev.mi.40.100186.003223
  12. Schaberg DR, Zervos MJ. Intergenic and interspecies gene exchange in gram positive cocci. Antimicrob. Agents Ch. 30: 817-822 (1986) https://doi.org/10.1128/AAC.30.6.817
  13. Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. R. 68: 560-602 (2004) https://doi.org/10.1128/MMBR.68.3.560-602.2004
  14. Allison HE. Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol. 2: 165-174 (2007) https://doi.org/10.2217/17460913.2.2.165
  15. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant Enterococci by PCR. J. Clin. Microbiol. 33: 24-27 (1995)
  16. Klein G. Taxonomy, ecology and antibiotic resistance of Enterococci from food and the gastrointestinal tract. Int. J. Food Microbiol. 88: 123-131 (2003) https://doi.org/10.1016/S0168-1605(03)00175-2
  17. Klein G, Pack A, Reuter G. Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant Enterococci in raw minced beef and pork in Germany. Appl. Environ. Microb. 64: 1825-1830 (1998)
  18. Ben Omar N, Castro A, Lucas R, Abriouel H, Yousif NM, Franz CM, Holzapfel WH, Perez-Pulido R, Martinez-Canamero M, Galvez A. Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst. Appl. Microbiol. 27: 118-130 (2004) https://doi.org/10.1078/0723-2020-00248
  19. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 912: 72S-75S (1991)
  20. Franz CM, Stiles ME, Schleifer KH, Holzapfel WH. Enterococci in foods-a conundrum for food safety. Int. J. Food Microbiol. 88: 105-122 (2003) https://doi.org/10.1016/S0168-1605(03)00174-0
  21. Jett BD, Huycke MM, Gilmore MS. Virulence of Enterococci. Clin. Microbiol. Rev. 7: 462-478 (1994)
  22. Gordts B, van Landuyt H, Ieven M, Vandamme P, Goossens H. Vancomycin-resistant Enterococci colonizing the intestinal tracts of hospitalized patients. J. Clin. Microbiol. 33: 2842-2846 (1995)
  23. Moellering RC Jr. Emergence of Enterococcus as a significant pathogen. Clin. Infect. Dis. 14: 1173-1178 (1992) https://doi.org/10.1093/clinids/14.6.1173
  24. Linden PK, Miller CB. Vancomycin-resistant Enterococci: The clinical effect of a common nosocomical pathogen. Diagn. Micr. Infec. Dis. 33: 113-120 (1999) https://doi.org/10.1016/S0732-8893(98)00148-5
  25. Gin AS, Zhanel GG. Vancomycin-resistant Enterococci. Ann. Pharmacother. 30: 615-624 (1996)
  26. Sternm CS, Carvalho MG, Teixeira LM. Chracterization of Enterococci isolated from human and nonhuman sources in Brazil. Diagn. Micr. Infec. Dis. 20: 61-67 (1994) https://doi.org/10.1016/0732-8893(94)90093-0
  27. Iwen PC, Kelly DM, Linder J, Hinrichs SH, Dominguez EA, Rupp ME, Patil KD. Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrob. Agents Ch. 41: 494-495 (1997)
  28. Mundt JO. Occurrence of Enterococci on plants in a wild environment. Appl. Microbiol. 11: 141-144 (1963)
  29. Franz CMAP, Holzapfel WH, Stiles ME. Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47: 1-24 (1990)
  30. Giraffa G. Enterococci from foods. FEMS Microbiol. Rev. 26: 163-171 (2002) https://doi.org/10.1111/j.1574-6976.2002.tb00608.x
  31. Giraffa G. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215-222 (2003) https://doi.org/10.1016/S0168-1605(03)00183-1
  32. Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci new developments in the 21st century. Cell. Mol. Life Sci. 60: 2622-2636 (2003) https://doi.org/10.1007/s00018-003-3138-0