Optimization of Spirogyra Flocculation Using Polyaluminium Chloride

Polyaluminium Chloride를 이용한 미세조류 Spirogyra의 응집 최적화

  • Baek, Jaewon (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Choi, Jong-Il (Department of Biotechnology and Bioengineering, Chonnam National University)
  • 백재원 (전남대학교 생물공학과) ;
  • 최종일 (전남대학교 생물공학과)
  • Received : 2014.03.17
  • Accepted : 2014.06.13
  • Published : 2014.06.30


Flocculation is known one of the effective methods for harvesting microalgae. This study was aimed to optimize the flocculation condition for decreasing the amounts of flocculant and obtaining the highest yield of algal biomass. To achieve this goal, it was optimized the flocculant concentration, reaction pH and the concentration of cell density for harvest using response surface methodology (RSM). The flocculation of microalgae, Spirogyra varians, was carried out using inorganic flocculant polyaluminium chloride. By the RSM result, the optimal flocculation condition was calculated 5 ppm of polyaluminum chloride, pH 7.5 and 0.33 of optical cell density at $OD_{640}$. The obtained recovery yield of S. varians was 97.6% at the optimal condition.



Supported by : 전남대학교


  1. Lund, H. (2007). Renewable energy strategies for sustainable development. Energy 32: 912-919.
  2. Harun, R., M. Davidson, M. Doyle, R. Gopiraj, M.Danquah, and G. Forde (2011). Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy 35: 741-747.
  3. Junginger, M., T. Bolkesjø, D. Bradley, P. Dolzan, A. Faaij, J. Heinimo, and M. D. Wit (2008). Developments in international bioenergy trade. Biomass and Bioenergy 32: 717-729.
  4. Li, Y., M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero (2008). Biofuels from microalgae. Biotechnol. Prog. 24: 815-820.
  5. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
  6. Dismukes, G. C., D. Carrieri, N. Bennette, G. M. Ananyev, and M. C. Posewitz (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19: 235-240.
  7. Lee, A. K., D. M. Lewis, and P. J. Ashman (2009). Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J. Appl. Psychol. 21: 559-567.
  8. Raja, R., S. Hemaiswarya, N. A. Kumar, S. Sridhar, and R.Rengasamy (2008). A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34: 77-88.
  9. Radakovits, R., R. E. Jinkerson, A. Darzins, and M. C. Posewitz (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9: 486-501.
  10. Yoon, M., J. I. Choi, G. H. Kim, D. H. Kim, and D. H. Park (2013). Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation. Bioprocess Biosyst. Eng. 36: 765-774.
  11. Sukenik, A., D. Bilanovic, and G. Shelef (1988). Flocculation of microalgae in brackish and sea waters. Biomass 15: 187-199.
  12. Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A.Hoadley (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Renew. Sustain. Energ. Rev. 2: 012701.
  13. Kwon, D. Y., C. K. Jung, K. B. Park, C. G. Lee, and J. W. Lee (2011). Flocculation characteristics of microalgae using chemical flocculants. KSBB J. 26: 143-150.
  14. Brennan, L. and P. Owende (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 14: 557-577.
  15. Hossain, A. S., A. Salleh, A. N. Boyce, and M. Naqiuddin (2008). Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol. 4: 250.
  16. Szklo, A. and R. Schaeffer (2006). Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition. Energ. 31: 2513-2522.
  17. Somasundaran, P. (2006). Encyclopedia of surface and colloid science. 2nd ed., pp. 2588-2591. CRC Press, Taylor & Francis Group, NY, USA.
  18. Yoon, M., M. K. Kim, and G. H. Kim (2009) Conjugation process in Spirogyra varians monitored with FITC-lectins (Zygnemataceae, Chlorophyta). Algae 24: 39-45.
  19. Zheng, H., Z. Gao, J. Yin, X. Tang, X.Ji, and H. Huang (2012). Harvesting of microalgae by flocculation with poly ($\gamma$-glutamic acid). Bioresour. Technol. 112: 212-220.
  20. Shen, Y., Y. Cui, and W. Yuan (2013). Flocculation optimization of microalga Nannochloropsisoculata. Appl. Biochem. Biotechnol. 169: 2049-2063.
  21. Sanyano, N., P. Chetpattananondh, and S. Chongkhong (2013). Coagulation-flocculation of marine Chlorella sp. for biodiesel production. Bioresour. Technol. 147: 471-476.
  22. Kiran, B., A. Kaushik, and C. P. Kaushik (2007). Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem. Eng. J. 126: 147-153.
  23. Huang, J., Z. H. Yang, G. M. Zeng, M. Ruan, H. Y. Xu, W. C. Gao, and H. M. Xie (2012). Influence of composite flocculant of PAC and MBFGA1 on residual aluminum species distribution. Chem. Eng. J. 191: 269-277.
  24. Bradley, R. L. (1998). Renewable energy: Not cheap, not green? Strategic Planning for Energy and the Environment 17: 15-21.

Cited by

  1. Skin-Whitening and Anti-Wrinkle Effects of Bioactive Compounds Isolated from Peanut Shell Using Ultrasound-Assisted Extraction vol.26, pp.5, 2014,