DOI QR코드

DOI QR Code

One Pot Synthesis of Novel Cyanopyridones as an Intermediate of Bioactive Pyrido[2,3-d]Pyrimidines

  • Khatri, Taslimahemad T. ;
  • Shah, Viresh H.
  • Received : 2014.02.26
  • Accepted : 2014.05.29
  • Published : 2014.08.20

Abstract

Synthesis, structural characterization, and biological activity studies of novel pyrido[2,3-d]pyrimidines (10a-h, 11a-h) are described. Cyclization of cynoacetamides (4, 5) with malonitrile (7) and aldehyde (6a-h) via Hantzsch pyridine synthesis afforded cyanopyridones (8a-h, 9a-h), which on cyclization with formic acid under microwave conditions led to the final product. All the reactions are significantly faster and the isolated yields are remarkably higher in microwave conditions compared to the conventionally heated reactions. The compounds were tested in vitro for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtillus, Staphylococcus aureus, and Micrococcus luteus and antifungal activity against Trichphyton longifusus, Candida albicans, Microsporum canis, Fusarium solani. Compounds 10b, 10e, 11b and 11e exhibited good antibacterial and antifungal activities compared with standards.

Keywords

Microwave-assisted synthesis;2-Cyano-N-phenylacetamides;Pyrido[2,3-d]pyrimidines;Antibacterial activity;Antifungal activity

References

  1. Gangjee, A.; et al. Synthesis and Biological Evaluation of 2,4-Diamino-6-(arylaminomethyl)pyrido[2,3-d]pyrimidines as Inhibitors of Pneumocystis Carinii and Toxoplasma Gondii Dihydrofolate Reductase and as Antiopportunistic Infection and Antitumor Agents. J. Med. Chem. 2003, 46(23), 5074. https://doi.org/10.1021/jm030312n
  2. Lee, C. H.; et al. Discovery of 4-Amino-5-(3-bromophenyl)- 7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d] pyrimidine, an Orally Active, Non-nucleoside Adenosine Kinase Inhibitor. J. Med. Chem. 2001, 44(13), 2133. https://doi.org/10.1021/jm000314x
  3. Trumpp-Kallmeyer, S.; et al. Development of a Binding Model to Protein Tyrosine Kinases for Substituted Pyrido[ 2,3-d]pyrimidine Inhibitors. J. Med. Chem. 1998, 41(11), 1752. https://doi.org/10.1021/jm970634p
  4. El-Gazzar, A. R.; Hafez, H. N. Synthesis of 4-Substituted pyrido[2,3-d]pyrimidin-4(1H)-one as Analgesic and Antiinflammatory Agents. Bioorg. Med. Chem. Lett. 2009, 19(13), 3392. https://doi.org/10.1016/j.bmcl.2009.05.044
  5. Kamlesh, K.; Taslimahemad, K.; Praful, P. One Pot Synthesis of Bioactive Novel Cyanopyridones. J. Korean Chem. Soc. 2013, 57(4), 476. https://doi.org/10.5012/jkcs.2013.57.4.476
  6. Al-Sehemi, A. G. A Convenient Synthesis and Characterization of 1,2-Dihydrpyridine-2-one, Pyrido[2,3-d]pyrimidine and Thieno [3,4-c]pyridine derivatives. Der. Pharma. Chemica. 2010, 2(2), 336.
  7. Mont, N.; et al. A Diversity Oriented, Microwave Assisted Synthesis of N-Substituted 2-Hydro-4-amino-pyrido[2,3- d]pyrimidin-7(8H)-ones. Mol. Divers. 2009, 13(1), 39. https://doi.org/10.1007/s11030-008-9096-6
  8. Wang, K.; et al. Cyanoacetamide Multicomponent Reaction (I): Parallel Synthesis of Cyanoacetamides. J. Comb. Chem. 2009, 11(5), 920. https://doi.org/10.1021/cc9000778
  9. Linday, E. M. Practical Introduction to Microbiology; E & FN spon Ltd: London, U.K., 1962; p 177.
  10. Collins, C. H. Microbiological Methods; Butterworths: London, U.K., 1967; p 364.
  11. Pandey, A.; et al. Identification of Orally Active, Potent, and Selective 4-Piperazinylquinazolines as Antagonists of the Platelet-derived Growth Factor Receptor Tyrosine Kinase Family. J. Med. Chem. 2002, 45(17), 3772. https://doi.org/10.1021/jm020143r
  12. Antonello, A.; et al. Design, Synthesis, and Biological Evaluation of Prazosin-related Derivatives as Multipotent Compounds. J. Med. Chem. 2005, 48(1), 28. https://doi.org/10.1021/jm049153d
  13. Bathini, Y.; et al. 2-Aminoquinazoline Inhibitors of Cyclindependent Kinases. Bioorg. Med. Chem. Lett. 2005, 15(17), 3881. https://doi.org/10.1016/j.bmcl.2005.05.131
  14. Matulenko, M. A.; et al. 5-(3-Bromophenyl)-7-(6-morpholin- 4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-ylamine: Structure-activity Relationships of 7-substituted Heteroaryl Analogs as Non-nucleoside Adenosine Kinase Inhibitors. Bioorg. Med. Chem. 2005, 13(11), 3705. https://doi.org/10.1016/j.bmc.2005.03.023
  15. Wu, Z.; et al. Development of Pyridopyrimidines as Potent Akt1/2 Inhibitors. Bioorg. Med. Chem. Lett. 2008, 18(4), 1274. https://doi.org/10.1016/j.bmcl.2008.01.054
  16. Ribble, W.; et al. Discovery and Analysis of 4H-pyridopy- Rimidines, a Class of Selective Bacterial Protein Synthesis Inhibitors. Antimicrob Agents Chemother. 2010, 54(11), 4648. https://doi.org/10.1128/AAC.00638-10
  17. Guiles, J. W.; et al. Development of 4H-Pyridopyrimidines: A Class of Selective Bacterial Protein Synthesis Inhibitors. Org. Med. Chem. Lett. 2012, 2(1), 5. https://doi.org/10.1186/2191-2858-2-5
  18. Kovacs, J. A.; et al. Potent Antipneumocystis and Antitoxoplasma Activities of Piritrexim, a Lipid-soluble Antifolate. Antimicrob Agents Chemother. 1988, 32(4), 430. https://doi.org/10.1128/AAC.32.4.430
  19. Gangjee, A.; et al. Pneumocystis Carinii and Toxoplasma Gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents: Synthesis and Biological Activities of 2,4-Diamino- 5-methyl-6-[(monosubstituted anilino)methyl] pyrido[2,3- d]pyrimidines. J. Med. Chem. 1999, 42(13), 2447. https://doi.org/10.1021/jm990079m
  20. Youssef, M. M.; Amin, M. A. Microwave Assisted Synthesis of Some New Thiazolopyrimidine, Thiazolodipyrimidine and Thiazolopyrimidothiazolopyrimidine Derivatives with Potential Antioxidant and Antimicrobial Activity. Molecules. 2012, 17(8), 9652. https://doi.org/10.3390/molecules17089652
  21. Kanagarajan, V.; et al. A Facile Microwave Assisted Green Chemical Synthesis of Novel Piperidino 2-Thioxoimidazolidin- 4-ones and Their in Vitro Microbiological Evaluation. J. Enzyme. Inhib. Med. Chem. 2011, 26(1), 67. https://doi.org/10.3109/14756361003691878
  22. Gitto, R.; et al. Synthesis and Evaluation of Pharmacological Profile of 1-Aryl-6,7-dimethoxy-3,4-dihydroisoquinoline- 2(1H)-sulfonamides. Bioorg. Med. Chem. 2009, 17(10), 3659. https://doi.org/10.1016/j.bmc.2009.03.066
  23. Rodriguez, H.; et al. Eco-friendly Methodology to Prepare N-Heterocycles Related to Dihydropyridines: Microwaveassisted Synthesis of Alkyl 4-Arylsubstituted-6-chloro-5- formyl-2-methyl-1,4-dihydropyridine-3-carboxylate and 4- Arylsubstituted-4,7-dihydrofuro[3,4-b]pyridine-2,5(1H, 3H)- dione. Molecules 2011, 16(11), 9620. https://doi.org/10.3390/molecules16119620
  24. Martinez, J.; et al. Green Approach & # 8212; Multicomponent Production of Boron & # 8212; Containing Hantzsch and Biginelli Esters. Int. J. Mol. Sci. 2013, 14(2), 2903. https://doi.org/10.3390/ijms14022903
  25. Balatsos, N. A.; et al. Inhibition of Human Poly(A)-specific Ribonuclease (PARN) by Purine Nucleotides: Kinetic Analysis. J. Enzyme. Inhib. Med. Chem. 2009, 24(2), 516. https://doi.org/10.1080/14756360802218763
  26. Raboisson, P.; et al. Design, Synthesis and Structure-activity Relationships of a Series of 9-Substituted Adenine Derivatives as Selective Phosphodiesterase Type-4 Inhibitors. Eur. J. Med. Chem. 2003, 38(2), 199. https://doi.org/10.1016/S0223-5234(02)01446-0
  27. Manikowski, A.; et al. Inhibition of Herpes Simplex Virus Thymidine Kinases by 2-Phenylamino-6-oxopurines and Related Compounds: Structure-activity Relationships and Antiherpetic Activity in Vivo. J. Med. Chem. 2005, 48(11), 3919. https://doi.org/10.1021/jm049059x
  28. Zbancioc, G.; et al. Microwave Assisted Reactions of Some Azaheterocylic Compounds. Molecule. 2009, 14(1), 403. https://doi.org/10.3390/molecules14010403
  29. Bardagi, J. I.; Rossi, R. A. Short Access to 6-Substituted Pyrimidine Derivatives by the S (RN) Mechanism. Synthesis of 6-Substituted Uracils Through a One-pot Procedure. J Org Chem. 2010, 75(15), 5271. https://doi.org/10.1021/jo101064e