DOI QR코드

DOI QR Code

Isolation of Lipid High-yielding Chlorella vulgaris Mutants by UV Irradiation

자외선 조사에 의한 지질 고생산성 Chlorella vulgaris 변이주 분리

Jeong, Haeng Soon;Choi, Min Kyung;Choi, Tae-O;Lee, Jae-Hwa
정행순;최민경;최태오;이재화

  • Received : 2014.06.11
  • Accepted : 2014.06.17
  • Published : 2014.06.30

Abstract

Chlorella vulgaris, a genus of single-cell green algae, is considered to be a very essential resource for the higher value-added business including functional food and biodiesel, due to its high contents of protein, carbohydrate and lipid. In this study, ultraviolet rays were irradiated in order to induce the mutation of C. vulgaris. After inducing the mutation, UV1-20 mutant, high in lipid was selected and its cell growth rate, dry weight, pigment content and lipid content were measured. The growth rate of the UV1-20 mutant was increased almost 1.5 times than the wild type, but pigment contents of chlorophyll and carotinoid were decreased. In addition, the lipid content of UV1-20 was increased 1.8 times than the wild type. Therefore, C. vulgaris mutant, isolated in this study, is considered to have sufficient potential to be used as a material for the higher value-added business.

Keywords

microalgae;Chlorella vulgaris;lipid;ultra violet;mutation

References

  1. Atsushi, M. 1999. What is Chlorella. Food Ind. 9, 122-138.
  2. Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G. 2009. Freshwater and marin microalgae sequestering of $CO_2$ at different C and N concentrations-response surface methodology analysis. Energ. Convers. Manage. 50, 262-267. https://doi.org/10.1016/j.enconman.2008.09.024
  3. Caldwell, C. R. 1993. Ultraviolet-induced photo degradation of cucumber (Cucumis sativus L.) microsomal and soluble protein tryptophanyl residues in vitro, Plant Physiol. 101, 947-953. https://doi.org/10.1104/pp.101.3.947
  4. Chen, W., Sommerfeld, M. and Hu, Q. 2011. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Biores. Technol. 102, 135-141. https://doi.org/10.1016/j.biortech.2010.06.076
  5. Chiu, S. Y., Kao, C. Y., Tsai, M. T. Ong, S. C., Chen, C. H. and Lin, C. S. 2009. Lipid accumulation and $CO_2$ utilization of Nannochloropsis oculata in response to $CO_2$ aeration. Bioresour. Technol. 100, 833-838. https://doi.org/10.1016/j.biortech.2008.06.061
  6. Choi, H.-J. and Lee, S.-M. 2011. Effect of temperature, light intensity and pH on the growth rate of Chlorella vulgaris. Journal of KSEE. 33, 511-515. https://doi.org/10.4491/KSEE.2011.33.7.511
  7. Jeong, U-C., Han, J.-C., Choi, B.-D. and Kang, S.-J. 2013. Lipid and fatty acid composition in Nannochloropsis oculata cultured in varying salinities. Kor. J. Fish. Aquat. Sci. 46, 252-258. https://doi.org/10.5657/KFAS.2013.0252
  8. Choi, S.-J., Kim, Y.-H., Kim, A. and Lee, J.-H. 2013. Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition. Appl. Chem. Eng. 24, 628-632. https://doi.org/10.14478/ace.2013.1085
  9. Clark, J. H., Budarin, V., Deswarte, F. E. I., Hardy, J. J., Kerton, F. M., Junt, A. J., Luque, R., Macquarrie, D. J., Milkowski, K., Rodriguez, A. Samuel, O., Tavener, S. J. White, R. J. and Wilson A. J. 2006. Green chemistry and the biorefinery: A partnership for a sustainable future. Green Chem. 8, 853-860. https://doi.org/10.1039/b604483m
  10. Cood, G. A., Okabe, K. and Stewart, W. P. 1980. Cellular compartmentation of photosynthetic and photorespiratory enzymes in the heterocystous cyanobacterium Anabaena cylindrica. Arch. Microbiol. 124, 149-154.
  11. Kang, M.-S., Sim, S.-J. and Chae, H. J. 2004. Chlorella as a functional biomaterial. Korean J. Biotechnol. Bioeng. 19, 1-11.
  12. Kim, J.-H., Park, H.-J., Kim, Y.-H., Joo, H., Lee, S.-H. and Lee, J.-H. UV-induced mutagenesis of Nannochloropsis oculata for the increase of lipid accumulation and its characterization. Appl. Chem. Eng. 24, 155-160.
  13. Kim, Y.-H. and Lee, J.-H. 2012. Isolation of Arthrospira platensis mutants producing high lipid and phycobiliproteins. J. Korean Biotech. Bioen. 27, 172-176. https://doi.org/10.7841/ksbbj.2012.27.3.172
  14. Park, S.-J., Choi, Y.-E, Kim, C. W., Park, W.-K. and Yang, J.-W. 2010. Production of biomass and lipid using microalga Nannochloris oculata under different conditions of nitrogen and irradiance. Journal of KSBB. 25, 553-558.
  15. Rodolfi, L., Zittelli, G. C. Bassi, N., Padovani, G. Biondi, N., Bonini, G. and Terdici M. R. 2009. Microalgae for oil : strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112. https://doi.org/10.1002/bit.22033
  16. Sisson, W. B. and Caldwell, M. M. 1976. Photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to ultraviolet irradiance (288-15 nm) simulating a reduced ozone column. Plant physiol. 58, 563-568. https://doi.org/10.1104/pp.58.4.563
  17. Teramura, A. H., Biggs, R. H. and Kossuth, S. 1980. Effect of ultraviolet-B irradiance on soybean II. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration, Plant Physiol. 65, 483-488. https://doi.org/10.1104/pp.65.3.483
  18. Wang, B., Li, Y. Q., Wu, N. and Lan, C. Q. 2008. $CO_2$ biomitigation using microalgae. Appl. Microbiol. Biotechol. 79, 707-718. https://doi.org/10.1007/s00253-008-1518-y

Cited by

  1. Characterization of Chlorella Vulgaris Mutants Generated by EMS (Ethyl Methane Sulphonate) vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1007

Acknowledgement

Supported by : 국립생물자원관