DOI QR코드

DOI QR Code

Systemic Statistical Optimization of Astaxanthin Inducing Methods in Haematococcus pluvialis cells -Statistical Optimization of Astaxanthin Production in Haematococcus

  • Received : 2014.06.30
  • Accepted : 2014.07.31
  • Published : 2014.06.30

Abstract

The production of astaxanthin in the microalga Haematococcus pluvialis has been investigated using a sequential methodology based on the application of two types of statistical designs. The employed preliminary experiment was a fractional factorial design $2^6$ in which the factors studied were: excessive irradiance and nitrate starvation, phosphate deficiency, acetate supplementation, salt stress, and elevated temperature. The experimental results indicate that the amount of astaxanthin accumulation in the cells can be enhanced by excessive irradiance and nitrate starvation whereas the other factors tested did not yield any enhancement. In the subsequent experiment, a central composite design was applied with four variables, light intensity, nitrate, phosphate, and acetate, at five levels each. The optimal conditions for the highest astaxanthin production were found to be $1040{\mu}E/(m^2{\cdot}s)$ light intensity, 0.04 g/L nitrate, 0.31 g/L phosphate, 0.05 g/L acetate concentration.

Keywords

Haematococcus pluvialis;astaxanthin;statistical optimization of astaxanthin inducing methods;fractional factorial design;central composite design

References

  1. Fan, L., A. Vonshak, and S. Boussiba. 1994. Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlotophytceae). J. Phycol. 30, 829-833. https://doi.org/10.1111/j.0022-3646.1994.00829.x
  2. Borowitzka, M. A., J. M. Huisman, and A. Osborn. 1991. Culture of astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J. Appl. Phycology 3, 295-304. https://doi.org/10.1007/BF02392882
  3. Choi, S.-L., I. S. Suh, and C.-G. Lee. 2003. Lumostatic operation of bubble colimn photobioreactors for Haematococcus pluvilis cultures using a specific light uptake rate as a contral parameter. Enzyme Microb. Technol. 33, 403-409. https://doi.org/10.1016/S0141-0229(03)00137-6
  4. Choi, Y. E., Y.-S. Yun, and J. M. Park. 2002. Evaluation of factors promotion astaxanthin production by a unicelluar green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18, 1170-1175. https://doi.org/10.1021/bp025549b
  5. Cordero, B., A. Otero, M. Patino, B. O. Arredondo, and J. Fabregas. 1996. Astaxanthin production from the green alga Haematococcus pluvialis with different stress conditions. Biotech. Lett. 18, 213-218. https://doi.org/10.1007/BF00128682
  6. Ellekjar, M. R. and S. Bisgaard. 1998. The use of experimental design in the development of new products. IJQS 3, 254-274.
  7. Gong, X. and F. Chen. 1997. Optimization of culture medium for growth of Haematococcus pluvialis. J. Appl. Phycol. 9,437-444. https://doi.org/10.1023/A:1007944922264
  8. Gong, X. and F. Chen. 1998. Influence of medium components on astaxanthin content and production of Haematococcus pluvialis. Process Biochem. 33, 385-391. https://doi.org/10.1016/S0032-9592(98)00003-X
  9. Harker, M., A. J. Tsavalos, and A. J. Young. 1995. Use of response surface methodology to optimise carotenogenesis in the microalga, Haematococcus pluvialis. J. Appl. Phycology 7, 399-406. https://doi.org/10.1007/BF00003797
  10. Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Factors Reponsible for Astaxanthin Formation in the Chlorophyte Haematococcus pluvialis. Bioresource Technol. 55, 207-214. https://doi.org/10.1016/0960-8524(95)00002-X
  11. Johnson, N. and F. C. Leone. 1977. Statistics and experimental design in enfineering and the physical sciences. Toronto, Canada: John Wiley & Sons, Inc.
  12. Kakizono, T., M. Kobayashi, and S. Nagai. 1992. Effect of carbon/nitrogen ratio on Encystment accompanied with Astaxanthin formation in a Green Alga, Haematococcus pluvialis. J. Ferment. Bioengng. 74, 403-405. https://doi.org/10.1016/0922-338X(92)90041-R
  13. Kobayashi, M., T. Kakizono, N. Nishio, and S. Nagai. 1992. Effects of Light Intensity, Light Quality, and Illumination Cycle on Astaxanthin Formation in a Green Alga, Haematococcus pluvialis. J. Ferment. Bioengng 74, 61-63. https://doi.org/10.1016/0922-338X(92)90271-U
  14. Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis. Appl. Envir. Microbiol. 59, 867-873.
  15. Lorenz, R. T. and G. R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source fo astaxanthin. Tibtech 18, 160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
  16. Lorenz, R. T. 2001. HPLC and spectrometric analysis of carotenoids from Haematococcus algae oleoresin. BioAstin/NatuRose$^{TM}$TechnicalBulletin 20, 1-9.
  17. Orosa, M., E. Torres, P. Fidalgo, and L. Abalde. 2000. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 12, 553-556. https://doi.org/10.1023/A:1008173807143
  18. Margalith, P. Z. 1999. Production of ketocarotenoids by microalgae. Appl. Microbiol. Biotechnol. 51, 431-438. https://doi.org/10.1007/s002530051413
  19. Mason, R. L., R. F. Gunst, and J. L. Hess. 1989. Statistical design and anaysis of experiments with applications to engineering and science. Tornto, Canada: John Wiley & Sons, Inc.
  20. Montgomery, D. C. 1997. Design and analysis of experiments. United States of America: John Wiley & Sons, Inc.
  21. Orosa, M., J. F. Valero, C. Herrero, and J. Abalde. 2001. Comparision of accumulation of astaxanthin in Haematococcus pluvialis and oter green microalgae under N-starvation and high light conditions. Biotech. Lett. 23, 1079-1085. https://doi.org/10.1023/A:1010510508384
  22. Park, E. K. and C. K. Lee. 2001. Astaxnanthin production by Haematococcus pluvialis under various light intensities and wavelength. J. Microbiol. Biotechnol. 11, 1024-1030.
  23. Pujari, V. and T. S. Chanadra. 2000. Statistical optimization of medium components for enhanced riboflavin production by UV-mutant of Eremothecium ashbyii. Process Biochem. 36, 31-37. https://doi.org/10.1016/S0032-9592(00)00173-4
  24. Ramirez, J., H. Gutierrez, and A. Gschaedler. 2001. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J. Biotechnol. 88, 259-268. https://doi.org/10.1016/S0168-1656(01)00279-6
  25. Sarada, R., U. Tripathi, and G. A. Ravishankar. 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 37, 623-627. https://doi.org/10.1016/S0032-9592(01)00246-1
  26. Stein, J. R. 1973. Culture methods and growth measurements. Handbook of phycological methods. London, UK: Cambridge University Press. pp 13-14.
  27. Tjahjono, A. E., Y. Hayama, T. Kakizono, and S. Nagai. 1994. Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechn. Lett. 16, 133-138. https://doi.org/10.1007/BF01021659
  28. Tripathi, U., R. Sarada, R. Rao, and G. A. Ravishanker. 1999. Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresource Technol. 68, 197-199. https://doi.org/10.1016/S0960-8524(98)00143-6
  29. Yates, P. and R. W. Mee. 2000. Fractional factorial designs that restrict the number of treatment combinations for factor subsets. Qual. Reliab. Engng. Int. 16, 343-354. https://doi.org/10.1002/1099-1638(200009/10)16:5<343::AID-QRE343>3.0.CO;2-S
  30. Yuan, J. P. and F. Chen. 1999. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification. J. Agric. Food Chem. 47, 31-35. https://doi.org/10.1021/jf980465x
  31. Yuan, J. P. and F. Chen. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strian of the microalga Heamatococcus pluvialis. Food Chem. 68, 443-448. https://doi.org/10.1016/S0308-8146(99)00219-8
  32. Zhang, D. H., Y. K. Lee, M. L. Ng, and S. M. Phang. 1997. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J. Appl. Phycol. 9, 147-155. https://doi.org/10.1023/A:1007926528388

Acknowledgement

Supported by : National Research Foundation of Korea