DOI QR์ฝ”๋“œ

DOI QR Code

ON MINIMAL NON-๐“ ๐“๐‘บ-GROUPS

  • Han, Zhangjia ;
  • Shi, Huaguo ;
  • Chen, Guiyun
  • Received : 2013.08.16
  • Published : 2014.07.31

Abstract

A finite group G is called a $\mathcal{QNS}$-group if every minimal subgroup X of G is either quasinormal in G or self-normalizing. In this paper the authors classify the non-$\mathcal{QNS}$-groups whose proper subgroups are all $\mathcal{QNS}$-groups.

Keywords

minimal subgroups;quasinormal subgroups;self-normalizing sub-groups;$\mathcal{QNS}$-groups;minimal non-$\mathcal{QNS}$-groups

References

  1. T. J. Laffey, A lemma on finite p-group and some consequences, Proc. Cambridge Philos. Soc. 75 (1974), 133-137. https://doi.org/10.1017/S0305004100048350
  2. G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), no. 4, 398-404. https://doi.org/10.1090/S0002-9947-1903-1500650-9
  3. D. J. S. Robinson, A Course in the Theory of Groups, New York, Springer, 1993.
  4. N. Sastry, On minimal non-PN-groups, J. Algebra 65 (1980), no. 1, 104-109. https://doi.org/10.1016/0021-8693(80)90241-0
  5. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. I, Bull. Amer. Math. Soc. 74 (1968), 383-437. https://doi.org/10.1090/S0002-9904-1968-11953-6
  6. L. Wang, The Influence of Permutable Properties of Subgroups on the Structure of Finite Groups, Doctoral Dissertation of Zhongshan University, 2006.
  7. W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125-132. https://doi.org/10.1007/BF01111801
  8. K. Doerk, Minimal nicht uberauflosbare endliche Gruppen, Math. Z. 91 (1966), 198-205. https://doi.org/10.1007/BF01312426
  9. D. Gorenstein, Finite Simple Groups, New York, Plenum Press, 1982.
  10. P. Guo and X. Zhang, On minimal non-MSP-groups, Ukrainian Math. J. 63 (2012), no. 9, 1458-1463. https://doi.org/10.1007/s11253-012-0591-7
  11. Z. Han, G. Chen, and H. Shi, On minimal non-NSN-groups, J. Korean Math. Soc. 50 (2013), no. 3, 579-589. https://doi.org/10.4134/JKMS.2013.50.3.579
  12. T. Hawkes, On the automorphism group of a 2-group, Proc. London Math. Soc. 26 (1973), 207-225.
  13. B. Huppert, Endliche Gruppen I, New York, Berlin, Springer-Verlag, 1967.
  14. H. Kurzweil and B. Stellmacher, The Theory of Finite Groups: An Introduction, New York, Springer-Verlag, 2004.

Cited by

  1. Minimal non-๐’ฌ๐’ฎ-groups pp.1793-6500, 2019, https://doi.org/10.1142/S0218196719500231