DOI QR코드

DOI QR Code

POINTWISE SLANT SUBMERSIONS

  • Received : 2013.09.02
  • Published : 2014.07.31

Abstract

The purpose of this paper is to study pointwise slant submersions from almost Hermitian manifolds which extends slant submersion in a natural way. Several basic results in this point of view are proven in this paper.

Keywords

Riemannian submersion;Hermitian manifold;Kaehler manifold;pointwise slant submersion

References

  1. S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. https://doi.org/10.1088/0264-9381/4/5/026
  2. S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersion, The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NY, 1991.
  3. J. C. Marrero and J. Rocha, Locally conformal Kahler submersions, Geom. Dedicata 53 (1994), no. 3, 271-289. https://doi.org/10.1007/BF01264000
  4. M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
  5. B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966), 458-469.
  6. B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447. https://doi.org/10.2478/s11533-010-0023-6
  7. B. Sahin, Slant submersions from almost hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie 54(102) (2011), no. 1 93-105.
  8. B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwaneese J. Math. 17 (2013), no. 2, 629-659. https://doi.org/10.11650/tjm.17.2013.2191
  9. B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165. https://doi.org/10.4310/jdg/1214433303
  10. B. Watson, G, G'-Riemannian submersioins and nonlinear gauge field equations of general relativity, Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57 Teubner, Leipzig, 1983.
  11. P. Baird and J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press, Oxford, 2003.
  12. J. P. Bourguinon and H. B. Lowson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. https://doi.org/10.1007/BF01942061
  13. J. P. Bourguinon and H. B. Lowson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino (1989), Special Issue, 143-163.
  14. J. L. Cabrerizo, A. Carriazo, and M. Fernandez, Slant submanifolds in Sasakian manifolds , Glasg. Math. J. 42 (2000), no. 1, 125-138. https://doi.org/10.1017/S0017089500010156
  15. B. Y. Chen, Slant Immersions, Bull. Austral. Math. Soc. 41 (1990), no. 1, 134-147.
  16. B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
  17. B. Y. Chen and O. Garay, Pointwise slant submanifolds in almost Hermitian manifolds, Turk. J. Math. 36 (2012), no. 4, 630-640.
  18. C. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo 43 (1985), no. 1, 89-104.
  19. R. H. Escobales Jr., Riemannian submersions from complex projective space, J. Differential Geom. 13 (1978), no. 1, 93-107. https://doi.org/10.4310/jdg/1214434350
  20. F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen 53 (1998), no. 1-2, 217-223.
  21. M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific, River Edge, NJ, 2004.
  22. A. Gray, Pseudo-Riemannian almost product manifolds and submersion, J. Math. Mech. 16 (1967), 715-737.
  23. S. Ianus, A. M. Ionescu, R. Mocanu, and G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hambg. 81 (2011), no. 1, 101-114. https://doi.org/10.1007/s12188-011-0049-0
  24. S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/s10440-008-9241-3

Cited by

  1. On anti-invariant Riemannian submersions whose total manifolds are locally product Riemannian vol.108, pp.2, 2017, https://doi.org/10.1007/s00022-016-0347-x
  2. Conformal semi-slant submersions vol.14, pp.07, 2017, https://doi.org/10.1142/S0219887817501146
  3. Hemi-slant Riemannian Maps vol.14, pp.1, 2017, https://doi.org/10.1007/s00009-016-0817-2
  4. Semi-invariant submersions whose total manifolds are locally product Riemannian 2017, https://doi.org/10.2989/16073606.2017.1335657
  5. Hemi-Slant Submersions vol.13, pp.4, 2016, https://doi.org/10.1007/s00009-015-0602-7
  6. Geometric classification of warped products isometrically immersed into Sasakian space forms pp.0025584X, 2018, https://doi.org/10.1002/mana.201700121
  7. Pointwise Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds vol.15, pp.3, 2018, https://doi.org/10.1007/s00009-018-1156-2