DOI QR코드

DOI QR Code

CRITERIA FOR A SYMMETRIZED MONOMIAL IN B(3) TO BE NON-HIT

  • Janfada, Ali S. (Department of Mathematics Urmia University)
  • Received : 2014.01.30
  • Published : 2014.07.31

Abstract

We find criteria for symmetrized monomials to be non-hit in the $\mathcal{A}_2$-algebra of symmetric polynomials in three variables, where $\mathcal{A}_2$ is the mod 2 Steenrod algebra.

Keywords

hit problem;symmetric hit problem;Steenrod algebra

References

  1. D. P. Carlisle and R. M. W. Wood, The boundedness conjecture for the action of the Steenrod algebra on polynomials, Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990), 203-216, London Math. Soc. Lecture Note Ser., 176, Cambridge Univ. Press, Cambridge, 1992.
  2. A. S. Janfada, A criterion for a monomial in P(3) to be hit, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 587-599. https://doi.org/10.1017/S030500410800162X
  3. A. S. Janfada, On a conjecture on the symmetric hit problem, Rend. Circ. Mat. Palermo 60 (2011), no. 3, 403-408. https://doi.org/10.1007/s12215-011-0062-2
  4. A. S. Janfada and R. M. W. Wood, The hit problem for symmetric polynomials over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 295-303.
  5. A. S. Janfada and R. M. W. Wood, Generating H*(BO(3), $F_2$) as a module over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 239-258. https://doi.org/10.1017/S0305004102006394
  6. M. Kameko, Generators of the cohomology of $BV_3$, J. Math. Kyoto Univ. 38 (1998), no. 3, 587-593. https://doi.org/10.1215/kjm/1250518069
  7. F. P. Peterson, A-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 311-312. https://doi.org/10.1017/S0305004100067803
  8. L. Smith, Polynomial Invariants of Finite Groups, Res. Notes Math., vol. 6, A. K. Peters Ltd. Wellesley, MA, 1995.
  9. N. Sum, The hit problem for the polynomial algebra of four variables, Seoul, November 3, (2007), http://www.kms.or.kr/data/asia/files/nguyensum.pdf
  10. N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), no. 5, 2365-2390. https://doi.org/10.1016/j.aim.2010.04.026
  11. A. S. Janfada, The Hit Problem for Symmetric Polynomials Over the Steenrod Algebra, PhD thesis, Manchester University, UK, 2000.