UV 및 UV/H2O2 시스템을 이용한 수중의 Tetracycline계 항생물질 제거

DOI QR코드

DOI QR Code

손희종;염훈식;장성호;김한수;홍순헌;박우식;송영채
Son, Hee-Jong;Yoom, Hoon-Sik;Jang, Seong-Ho;Kim, Han-Soo;Hong, Soon-Heon;Park, Woo-Sik;Song, Young-Chae

  • 투고 : 2014.05.28
  • 심사 : 2014.07.14
  • 발행 : 2014.07.31

초록

Seven tetracycline classes of antibiotics were treated using ultraviolet (UV) and $UV/H_2O_2$ oxidation. Two different UV lamps were used for the UV and $UV/H_2O_2$ oxidation. The performance of the UV oxidation was different depending on the lamp type. The medium pressure lamp showed better performance than the low pressure lamp. Combining the low pressure lamp with hydrogen peroxide ($H_2O_2$) improved the removal performance substantially. The by-products formation of tetracycline by UV and $UV/H_2O_2$ were investigated. The protonated form ($[1+H]^+$) of tetracycline was m/z 445, reacted to yield almost exclusively two oxidation by-products by UV and $UV/H_2O_2$ oxidation. Their protonated forms of by-products were m/z 461 and m/z 477. The structures of tetracycline's by-products in UV and $UV/H_2O_2$ system were similar.

키워드

Antibiotics;Tetracycline;UV;$UV/H_2O_2$;By-product

참고문헌

  1. Hamscher, G., Sczesny, S., Hoper, H., Nau, H., 2002, Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry, Anal. Chem., 74, 1509-1518. https://doi.org/10.1021/ac015588m
  2. Halling-Sorensen, B., Nielson, S. N., Lanzky, P. E., Ingerslev, L. F., 1998, Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36(2), 357-393. https://doi.org/10.1016/S0045-6535(97)00354-8
  3. Huber, M. M., Korhonen, S., Ternes, T. A., von Gunten, U., 2005, Oxidation of pharmaceuticals during water treatment with chlorine dioxide, Water Res., 39(15), 3607-3617. https://doi.org/10.1016/j.watres.2005.05.040
  4. Karthikeyan, K. G., Meyer, M. T., 2006, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, U.S.A., Sci. Total Environ., 361, 196-207. https://doi.org/10.1016/j.scitotenv.2005.06.030
  5. Kim, I., Yamashita, N., Tanaka, H., 2009, Performance of UV and UV/$H_2O_2$ processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater., 166, 1134-1140. https://doi.org/10.1016/j.jhazmat.2008.12.020
  6. Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., 2000, Presence of therapeutic drugs in the environment, Lancet, 355, 1789-1790. https://doi.org/10.1016/S0140-6736(00)02270-4
  7. Wang, J. L., Xu, L. J., 2012, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Environ. Sci. Technol., 42, 251-325. https://doi.org/10.1080/10643389.2010.507698
  8. Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005, Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes, Environ. Sci. Technol., 39, 6649-6663. https://doi.org/10.1021/es0484799
  9. Yang, S. H., Carlson, K., 2003, Evaluation of antibiotic occurrence in a river through pristine, urban and agricultural landscapes, Water Res., 37, 4645-4646. https://doi.org/10.1016/S0043-1354(03)00399-3
  10. Zuorro, A., Fidaleo, M., Fidaleo, M., Lavecchia, R., 2014, Degradation and antibiotic activity reduction of chloramphenicol in aqueous solution by UV/$H_2O_2$ process, J. Environ. Manage., 133, 302-308. https://doi.org/10.1016/j.jenvman.2013.12.012
  11. Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2007, Determination of antibiotic compounds in water by on-line, Chemosphere, 66, 977-984. https://doi.org/10.1016/j.chemosphere.2006.07.037
  12. Chopra, I., Roberts, M., 2001, Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65, 232-233. https://doi.org/10.1128/MMBR.65.2.232-260.2001
  13. Daughton, C. G., Ternes, T. A., 1999, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 107, 907-942. https://doi.org/10.1289/ehp.99107s6907
  14. De la Cruz, N., Gimenez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., Pulgarin, C., 2012, Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge, Water Res., 46, 1947-1957. https://doi.org/10.1016/j.watres.2012.01.014
  15. Diaz-Cruz, M. S., de Alda, M. J. L., Barcelo, D., 2003, Environmental behavior and analysis of veterinary and human drug in soils, sediments and sludge, Trends Anal. Chem., 22, 340-351. https://doi.org/10.1016/S0165-9936(03)00603-4
  16. Son, H. J., Yeom, H. S., Jung, J. M., Jang, S. H., 2013, Application of on-line SPE-LC/MSD to measure perfluorinated compounds (PFCs) in water, J. Kor. Soc. Environ. Eng., 35(2), 75-83. https://doi.org/10.4491/KSEE.2013.35.2.075
  17. Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V., Baumann, W., 1999, Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil, Sci. Total Environ., 225, 135-141. https://doi.org/10.1016/S0048-9697(98)00339-8
  18. Kummerer, K., 2003, Significance of antibiotics in the environment, J. Antimicrobial Chemotherapy, 52, 5-7. https://doi.org/10.1093/jac/dkg293
  19. Li, K., Yediler, A., Yang, M., Schulte-Hostede, S., Wong, M. H., 2008, Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products, Chemosphere, 72, 473-478. https://doi.org/10.1016/j.chemosphere.2008.02.008
  20. Pereira, V. J., Linden, K. G., Weinberg, H. S., 2007, Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water, Water Res., 41, 4413-4423. https://doi.org/10.1016/j.watres.2007.05.056
  21. Rizzo, L., Fiorentino, A., Anselmo, A., 2013, Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistant E. coli strains, Chemosphere, 92, 171-176. https://doi.org/10.1016/j.chemosphere.2013.03.021
  22. Rooklidge, S. J., 2004, Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways, Sci. Total Environ., 325, 1-13. https://doi.org/10.1016/j.scitotenv.2003.11.007
  23. Son, H. J., Jang, S. H., 2011, Occurrence and residual pharmaceuticals and fate, residue and toxic effect in drinking water resources, J. Kor. Soc. Environ. Eng., 33(6), 453-479. https://doi.org/10.4491/KSEE.2011.33.6.453