Facile Fabrication and Characterization of In2O3 Nanorods on Carbon Fibers

  • Nagaraju, Goli (Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University) ;
  • Ko, Yeong Hwan (Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University) ;
  • Yu, Jae Su (Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University)
  • Received : 2014.07.16
  • Accepted : 2014.07.30
  • Published : 2014.07.30


Indium oxide ($In_2O_3$) nanorods (NRs) which can be expected to increase the device performance in various electronic and electrochemical applications were prepared on carbon fibers via an electrochemical deposition (ED) method. During the ED, the indium hydroxide ($In(OH)_3$) NRs were well grown and firmly attached onto the carbon fibers. After that, they were changed into $In_2O_3$ by dehydration through a thermal annealing. The morphological and structural properties were investigated using field-emission scanning electron microscope images. The crystallinity of as-prepared sample was evaluated by X-ray diffraction. The Fourier transform infrared results confirm that the functional groups are present in the $In_2O_3$ NRs. This facile process of metal oxide nanostructures on carbon fiber can be utilized for flexible electronic and energy related applications.


Supported by : National Research Foundation of Korea (NRF)


  1. G. Shen, B. Liang, X. Wang, H. Huang, D. Chen, and Z. L. Wang, ACS Nano, 5, 6148, (2011).
  2. C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. j. Yang, and Y. F. Chen, J. Phys. Chem. C, 115, 13083 (2011).
  3. H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao, and T. Wu, Opt. Express, 18, 15585 (2010).
  4. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Y, Z. Zhang, Y. Mao, S. C. Wang, Y. Shen and Y. Ton, Sci. Rep., 3, 1021 (2012).
  5. A. Gurlo, Nanoscale, 3, 154 (2011).
  6. L. Qin, P. S. Dutta, and S. Sawyer, Semicond. Sci. Technol., 27, 045005 (2012).
  7. X. Zou, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J. C. Ho, J. Li, C. Jiang, Q. Xiong, and L. Liao, ACS Nano, 7, 804 (2013).
  8. J. Q. Xu, Y. P. Chen, Q. Y. Pan, Q. Xiang, , Z. X. Cheng, and X. W. Dong, Nanotechnology, 18, 115615 (2007).
  9. L. Wu, Q. Li, X. Zhang, T. Zahai, Y. Bando, and D. Golberg, J. Phys. Chem. C, 115, 24564 (2011).
  10. P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, ACS Nano, 4, 4403 (2010).
  11. X. Xu, D. Wang, W. Wang, P. Sun, J. Ma, X. Liang, Y. Sun, Y. Ma, and G. Lu, Sens. Actuator B. Chem., 171-172, 1066 (2012).
  12. W. Yin, M. Cao, S. Luo, C. Hu, and B. Wei, Cryst. Growth Des. 9, 2173 (2009).
  13. A. Askarinejad, M. Iranpour, N. Bahramifar, and A. Morsali, J. Exp. Nanosci., 5, 294 (2010).
  14. N. G. Pramod, S. N. Pandey, and P. P. Sahay, J. Therm. Spray Technol., 22, 1035 (2013).
  15. D. Chu, Y. Masuda, T. Ohji, and K. Kato, Langmuir, 26, 14814 (2010).
  16. S. Dai, Y. Li, Z. Du, and K. R. Crter, J. Electrochem. Soc., 160, D156 (2013).
  17. N. K. Reddy, M. Devika, and C. W. Tu. Mater. Lett., 120, 62 (2014).
  18. X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, and G. Shen, Nanoscale, 5, 7831 (2013).
  19. Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, J. Xu, H. Han, D. Chen, G. Shen, ACS Nano, 5, 8412 (2011).
  20. R. K. Joshi, and J. J. Schneider, Chem. Soc. Rev, 41, 5285 (2012).
  21. M. Z. B. Hussein, Z. Zainal, A. Hj. Yahaya, and A. B. Abd. Aziz, Mater. Sci. Eng. B, 88, 100 (2002).