DOI QR코드

DOI QR Code

Facile Fabrication and Characterization of In2O3 Nanorods on Carbon Fibers

Nagaraju, Goli;Ko, Yeong Hwan;Yu, Jae Su

  • 투고 : 2014.07.16
  • 심사 : 2014.07.30
  • 발행 : 2014.07.30

초록

Indium oxide ($In_2O_3$) nanorods (NRs) which can be expected to increase the device performance in various electronic and electrochemical applications were prepared on carbon fibers via an electrochemical deposition (ED) method. During the ED, the indium hydroxide ($In(OH)_3$) NRs were well grown and firmly attached onto the carbon fibers. After that, they were changed into $In_2O_3$ by dehydration through a thermal annealing. The morphological and structural properties were investigated using field-emission scanning electron microscope images. The crystallinity of as-prepared sample was evaluated by X-ray diffraction. The Fourier transform infrared results confirm that the functional groups are present in the $In_2O_3$ NRs. This facile process of metal oxide nanostructures on carbon fiber can be utilized for flexible electronic and energy related applications.

키워드

Carbon fibers;$In_2O_3$ nanorods;Electrochemical deposition process

참고문헌

  1. N. G. Pramod, S. N. Pandey, and P. P. Sahay, J. Therm. Spray Technol., 22, 1035 (2013). https://doi.org/10.1007/s11666-013-9933-8
  2. D. Chu, Y. Masuda, T. Ohji, and K. Kato, Langmuir, 26, 14814 (2010). https://doi.org/10.1021/la102255k
  3. S. Dai, Y. Li, Z. Du, and K. R. Crter, J. Electrochem. Soc., 160, D156 (2013). https://doi.org/10.1149/2.064304jes
  4. N. K. Reddy, M. Devika, and C. W. Tu. Mater. Lett., 120, 62 (2014). https://doi.org/10.1016/j.matlet.2014.01.029
  5. X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, and G. Shen, Nanoscale, 5, 7831 (2013). https://doi.org/10.1039/c3nr02300a
  6. Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, J. Xu, H. Han, D. Chen, G. Shen, ACS Nano, 5, 8412 (2011). https://doi.org/10.1021/nn203315k
  7. R. K. Joshi, and J. J. Schneider, Chem. Soc. Rev, 41, 5285 (2012). https://doi.org/10.1039/c2cs35089k
  8. M. Z. B. Hussein, Z. Zainal, A. Hj. Yahaya, and A. B. Abd. Aziz, Mater. Sci. Eng. B, 88, 100 (2002).
  9. G. Shen, B. Liang, X. Wang, H. Huang, D. Chen, and Z. L. Wang, ACS Nano, 5, 6148, (2011). https://doi.org/10.1021/nn2014722
  10. C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. j. Yang, and Y. F. Chen, J. Phys. Chem. C, 115, 13083 (2011). https://doi.org/10.1021/jp201687k
  11. H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao, and T. Wu, Opt. Express, 18, 15585 (2010). https://doi.org/10.1364/OE.18.015585
  12. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Y, Z. Zhang, Y. Mao, S. C. Wang, Y. Shen and Y. Ton, Sci. Rep., 3, 1021 (2012).
  13. A. Gurlo, Nanoscale, 3, 154 (2011). https://doi.org/10.1039/c0nr00560f
  14. L. Qin, P. S. Dutta, and S. Sawyer, Semicond. Sci. Technol., 27, 045005 (2012). https://doi.org/10.1088/0268-1242/27/4/045005
  15. X. Zou, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J. C. Ho, J. Li, C. Jiang, Q. Xiong, and L. Liao, ACS Nano, 7, 804 (2013). https://doi.org/10.1021/nn305289w
  16. J. Q. Xu, Y. P. Chen, Q. Y. Pan, Q. Xiang, , Z. X. Cheng, and X. W. Dong, Nanotechnology, 18, 115615 (2007). https://doi.org/10.1088/0957-4484/18/11/115615
  17. L. Wu, Q. Li, X. Zhang, T. Zahai, Y. Bando, and D. Golberg, J. Phys. Chem. C, 115, 24564 (2011). https://doi.org/10.1021/jp207438s
  18. P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, ACS Nano, 4, 4403 (2010). https://doi.org/10.1021/nn100856y
  19. X. Xu, D. Wang, W. Wang, P. Sun, J. Ma, X. Liang, Y. Sun, Y. Ma, and G. Lu, Sens. Actuator B. Chem., 171-172, 1066 (2012). https://doi.org/10.1016/j.snb.2012.06.035
  20. W. Yin, M. Cao, S. Luo, C. Hu, and B. Wei, Cryst. Growth Des. 9, 2173 (2009). https://doi.org/10.1021/cg8008199
  21. A. Askarinejad, M. Iranpour, N. Bahramifar, and A. Morsali, J. Exp. Nanosci., 5, 294 (2010). https://doi.org/10.1080/17458080903513292

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)