DOI QR코드

DOI QR Code

Cerium Pyrophosphate-based Proton-conducting Ceramic Electrolytes for Low Temperature Fuel Cells

  • Singh, Bhupendra (School of Materials Science and Engineering,Chonnam National University) ;
  • Kim, Ji-Hye (School of Materials Science and Engineering,Chonnam National University) ;
  • Im, Ha-Ni (School of Materials Science and Engineering,Chonnam National University) ;
  • Song, Sun-Ju (School of Materials Science and Engineering,Chonnam National University)
  • Received : 2014.06.04
  • Accepted : 2014.07.14
  • Published : 2014.07.31

Abstract

Acceptor-doped cerium pyrophosphates have shown significant proton conductivity of > $10^{-2}Scm^{-1}$ in the range of $100-300^{\circ}C$ and are considered promising candidates for use as electrolytes in proton-conducting, ceramic electrolyte fuel cells (PCFCs). But, cerium pyrophosphates themselves do not have structural protons, and protons incorporate into their material bulk only as impurities on exposure to a hydrogen-containing atmosphere. However, proton incorporation and proton conduction in these materials are expected to be affected by factors such as the nature (ionic size and charge) and concentration of the aliovalent dopant, processing history (synthesis route and microstructure), and the presence of residual phosphorous phosphate ($P_mO_n$) phases. An exact understanding of these aspects has not yet been achieved, leading to large differences in the magnitude of proton conductivity of cerium pyrophosphates reported in various studies. Herein, we systematically address some of these aspects, and present an overview of factors affecting proton conductivity inacceptor-doped $CeP_2O_7$.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. H. Wang, J. Liu, W. Wang, and G. Ma, "Intermediate Temperature Ionic Conduction in $Sn_{1-x}Ga_{x}P_2O_7$," J. Power Sources, 195 [17] 5596-600 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.087
  2. Y. Jin, B. Lee, and T. Hibino, "Development and Application of $SnP_2O_7$-based Proton Conductors to Intermediate Temperature Fuel Cells," J. Japan Petrol. Inst., 53 [1] 12-23 (2010). https://doi.org/10.1627/jpi.53.12
  3. H. Wang, D. Zhao, Z. Ding, X. Deng, G. Ma, and Z. Zhou, "Electrical Conduction in Dense $Mg^{2+}$-doped $SnP_2O_7$-$SnO_2$ Composite Ceramic for Intermediate Temperature Fuel Cell," J. Power Sources, 222 467-69 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.001
  4. X. Wu, M. Mamlouk, and K. Scott, "A $PBI-Sb_{0.2}Sn_{0.8}P_2O_7$-$H_3PO_4$ Composite Membrane for Intermediate Temperature Fuel Cells," Fuel Cells, 11 [5] 620-25 (2011). https://doi.org/10.1002/fuce.201100089
  5. Y. C. Jin, M. Nishida, W. Kanematsu, and T. Hibino, "An $H_3PO_4$-doped Polybenzimidazole/$Sn_{0.95}Al_{0.05}P_2O_7$ Composite Membrane for High-temperature Proton Exchange Membrane Fuel Cells," J. Power Sources, 196 [15] 6042-47 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.094
  6. T. Matsui, S. Takeshita, Y. Iriyama, T. Abe, and Z. Ogumi, "Proton-conductive Electrolyte Consisting of $NH_4PO_3$/ $TiP_2O_7$ for Intermediate-temperature Fuel Cells," J. Electrochem. Soc.,152 [1] A167-70 (2005).
  7. T. Matsui, T. Kukino, R. Kikuchi, and K. Eguchi, "An Intermediate Temperature Proton-conducting Electrolyte Based on a $CsH_2PO_4/SiP_2O_7$ Composite," Electrochem. Solid-State Lett., 8 [5] A256-58 (2005). https://doi.org/10.1149/1.1883906
  8. A. Takeuchi, M. Nagao, P. Heo, M. Sano, T. Hibino, and A. Tomita, in Proceedings of Presentation at the 72th Meeting of The Electrochemical Society of Japan, Kumamoto, pp. 197, 2005.
  9. P. Heo, H. Shibata, M. Nagao, A. Tomita, and T. Hibino, "Performance of an Intermediate-Temperature Fuel Cell Using a Proton-conducting $Sn_{0.9}In_{0.1}P_2O_7$ Electrolyte," J. Electrochem. Soc.,153 [5] A897-901 (2006).
  10. R. Lan and S. Tao, "Conductivity of a New Pyrophosphate $Sn_{0.9}Sc_{0.1}(P_2O_7)_{1-{\delta}$ Prepared by an Aqueous Solution Method," J. Alloys Compd., 486 [1-2] 380-85 (2009). https://doi.org/10.1016/j.jallcom.2009.06.203
  11. G. Alberti, M. Casciola, F. Marmottini, and R. Vivani, "Preparation of Mesoporous Zirconium Phosphate-pyrophosphate with a Large Amount of Thermally Stable Acid Groups on the Pore Surface," J. Porous Mater., 6 [4] 299-305 (1999). https://doi.org/10.1023/A:1009688807579
  12. B. Singh, J. H. Kim, J. Y. Park, and S. J. Song, "Ionic conductivity of $Mn^{2+}$Doped Dense Tin Pyrophosphate Electrolytes Synthesized by a New Co-precipitation Method," J. Euro. Cer. Soc., 34 [12] 2967-76 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.024
  13. H. Onada, Y. Inagaki, A. Kuwabara, N. Kitamura, K. Amezawa, A. Nakahira, and I. Tanaka, "Synthesis and Electrical Conductivity of Tetra-valent Cerium Polyphosphate Bulks," Phosphorus Res. Bull., 23 20-24 (2009). https://doi.org/10.3363/prb.23.20
  14. A. Lapina, C. Chatzichristodoulou, J. Hallinder, P. Holtappels, and M. Mogensen, "Electrical Conductivity of Titaniumpyrophosphate between 100 and $400^{\circ}C$: Effect of Sintering Temperature and Phosphorus Content," J. Solid State Electrochem., 18 [1] 39-47 (2014). https://doi.org/10.1007/s10008-013-2225-x
  15. C. Chatzichristodoulou, J. Hallinder, A. Lapina, P. Holtappels, and M. Mogensen, "Phase Composition and Longterm Conductivity of Acceptor Doped $Ce(PO_3)_4$ and $CeP_2O_7$ with Variable P/Metal Ratio and of Ce$P_2O_7$-KH2PO4 Composite," J. Electrochem. Soc., 160 [8] F798-805 (2013). https://doi.org/10.1149/2.050308jes
  16. T. Norby, "The Promise of Protonics," Nature, 410 877-78 (2001). https://doi.org/10.1038/35073718
  17. K. M. White, P. L. Lee, P. J. Chupas, K. W. Chapman, E. A. Payzant, A. C. Jupe, W. A. Bassett, C. S. Zha, and A. P. Wilkinson, "Synthesis, Symmetry, and Physical Properties of Cerium Pyrophosphate," Chem. Mater., 20 [11] 3728-34 (2008). https://doi.org/10.1021/cm702338h
  18. R. K. B. Gover, N. D. Withers, S. Allen, R. L. Withers, and J. S. O. Evans "Structure and Phase Transitions of $SnP_2O_7$," J. Solid State Chem., 166 [1] 42-8 (2002). https://doi.org/10.1006/jssc.2002.9554
  19. X. Xu, S. Tao, P. Wormald, and J. T. S. Irvine, "Intermediate Temperature Stable Proton Conductors Based upon $SnP_2O_7$ Including Additional $H_3PO_4$," J. Mater. Chem., 20 [36] 7827-33 (2010). https://doi.org/10.1039/c0jm01089h
  20. S. R. Phadke, C. R. Bowers, E. D. Wachsman, and J. C. Nino, "Proton Conduction in Acceptor Doped $SnP_2O_7$," Solid State Ionics,183 26-31 (2011). https://doi.org/10.1016/j.ssi.2010.12.011
  21. M. V. Le, D. S. Tsai, C. Y. Yang, W. H. Chung, and H. Y. Lee, "Proton Conductors of Cerium Pyrophosphate for Intermediate Temperature Fuel Cell," Electrochim. Acta, 56 [19] 6654-60 (2011). https://doi.org/10.1016/j.electacta.2011.05.040
  22. K. D. Kreuer, "Proton-conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  23. C. Savaniu and J. T. S. Irvine, "$Sr3Ca_{1-x}ZnxZr_{0.5}Ta_{1.5}O_{8.75}$: A Study of the Influence of the B-site Dopant Nature upon Protonic Conduction," Solid State Ionics,162-163 105-13 (2003). https://doi.org/10.1016/S0167-2738(03)00239-X
  24. K. Amezawa, Y. Tomii, and N. Yamamoto, "High Temperature Protonic Conduction in Ca-doped $YPO_4$," Solid State Ionics, 162-163 175-80 (2003). https://doi.org/10.1016/S0167-2738(03)00223-6
  25. K. Amezawa, Y. Kitajima, Y. Tomii, N. Yamamoto, M. Wideroe, and T. Norby, "Protonic Conduction in Acceptor-doped $LaP_3O_9$," Solid State Ionics,176 [39-40] 2867-70 (2005). https://doi.org/10.1016/j.ssi.2005.09.017
  26. H. L. Ray, L. D. Jonghe, and R. Wang, "Rare Earth Phosphate Glass and Glass-ceramic Proton Conductors," ECS Trans.,16 [51] 389-93 (2009).
  27. B. Singh, J. H. Kim, S. Y. Jeon, J. Y. Park, and S. J. Song, "$Mn^{2+}$-doped $CeP_2O_7$ Composite Electrolytes for Application in Low Temperature Proton-conducting Ceramic Electrolyte Fuel Cells," J. Electrochem. Soc., 161 [1] F133-38 (2014). https://doi.org/10.1149/2.078403jes
  28. B. Singh, S. Y. Jeon, J. H. Kim, J. Y. Park, C. Bae, and S. J. Song, "Ionic Conductivity of $Gd^{3+}$-Doped Cerium Pyrophosphate Electrolytes with Core-shell Structure," J. Electrochem. Soc., 161 [4] F464-72 (2014). https://doi.org/10.1149/2.062404jes
  29. H. Onoda, Y. Inagaki, A. Kuwabara, N. Kitamura, K. Amezawa, A. Nakahira, and I. Tanaka, "Synthesis and Electrical Conductivity of Bulk Tetra-valent Cerium Pyrophosphate," J. Ceram. Process. Res.,11 [3] 344-47 (2010).
  30. X. Sun, S. Wang, Z. Wang, X. Ye, T. Wen, and F. Huang, "Proton Conductivity of $CeP_2O_7$ for Intermediate Temperature Fuel Cells," Solid State Ionics, 179 [2] 1138-41 (2008). https://doi.org/10.1016/j.ssi.2008.01.046
  31. V. I. L. Botto and E. J. Baran, "Crystallographic Data, IR Spectrum, and Thermal Behaviour of Cerium(IV) Diphosphate," Z. Anorg. Allg. Chem., 430 283-88 (1977). https://doi.org/10.1002/zaac.19774300129
  32. H. Zhang, J. Xiao, Z. Yang, H. Wang, G. Ma, and Z. Zhou, "Ionic Conduction in $Zn^{2+}$doped Zr$P_2O_7$ Ceramics at Intermediate Temperatures," Solid State Ionics, 218 1-6 (2012). https://doi.org/10.1016/j.ssi.2012.04.001
  33. B. Singh, H. N. Im, J. Y. Park, and S. J. Song, "Electrical Behavior of $CeP_2O_7$ Electrolyte for the Application in Lowtemperature Proton Conducting Ceramic Electrolyte Fuel Cells," J. Electrochem. Soc.,159 [12] F819-25 (2012). https://doi.org/10.1149/2.055212jes
  34. B. Singh, H. N. Im, J. Y. Park, and S. J. Song, "Studies on Ionic Conductivity of $Sr^{2+}$-doped $CeP_2O_7$ Electrolyte in Humid Atmosphere," J. Phys. Chem. C, 117 [6] 2653-61 (2013).
  35. B. Singh, S. Y. Jeon, H. N. Im, J. Y. Park, and S. J. Song, "Electrical Conductivity of $M^{2+}$-doped (M = Mg, Ca, Sr, Ba) Cerium Pyrophosphate-based Composite Electrolytes for Low-temperature Proton Conducting Electrolyte Fuel Cells," J. Alloys. Compd., 57 279-85 (2013). https://doi.org/10.1016/j.jallcom.2013.06.017
  36. H. Wang, H. Zhang, G. Xiao, F. Zhang, T. Yu, J. Xiao, and G. Ma, "Ionic Conduction in $Sn_{1-x}Sc_{x}P_2O_7$ for Intermediate Temperature Fuel Cells," J. Power Sources, 196 [2] 683-87 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.067
  37. V. Nalini, K. Amezawa, W. Xing, and T. Norby, "High Temperature Proton Conductivity of Zr$P_2O_7$," J. Electrochem. Soc., 157 [10] B1491-98 (2010). https://doi.org/10.1149/1.3474942
  38. V. Nalini, R. Haugsrud, and T. Norby, "High-temperature Proton Conductivity and Defect Structure of $TiP_2O_7$," Solid State Ionics, 181 [11-12] 510-16 (2010). https://doi.org/10.1016/j.ssi.2010.02.017
  39. V. Nalini, M. H. Sorby, K. Amezawa, R. Haugsrud, H. Fjellvag, and T. Norby, "Structure, Water Uptake, and Electrical Conductivity of $TiP_2O_7$," J. Am. Ceram. Soc., 94 [5] 1514-22 (2011). https://doi.org/10.1111/j.1551-2916.2010.04281.x
  40. T. Norby, "Solid-state Protonic Conductors: Principles, Properties, Progress and Prospects," Solid State Ionics, 125 [1-4] 1-11 (1999). https://doi.org/10.1016/S0167-2738(99)00152-6
  41. T. Norby, Proton Conductivity in Perovskite Oxides; in Perovskite Oxide for Solid Oxide Fuel Cells, Ed. by T. Ishihara, Springer, New York, U.S.A., 2009.
  42. O. Paschos, J. Kunze, U. Stimming, and F. Maglia, "A Review on Phosphate Based, Solid State, Protonic Conductors for Intermediate Temperature Fuel Cells," J. Phy.:Condens. Matter., 23 [23] 234110 (2011).
  43. S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Marle, "Solid Acids as Fuel Cell Electrolytes," Nature, 410 910-13 (2001). https://doi.org/10.1038/35073536
  44. K. J. Kwon, M. Yano, H. Y. Sun, and J. O. Park, "Proton Conductor," U. S. Patent Publication, U. S. 2005/0221143 A1, October, 2005.
  45. M. Nagao, A. Takeuchi, P. Heo, T. Hibino, M. Sano, and A. Tomita, "A Proton-conducting $In^{3+}$-doped $SnP_2O_7$ Electrolyte for Intermediate-temperature Fuel Cells," Electrochem. Solid State Lett., 9 [3] A105-09 (2006). https://doi.org/10.1149/1.2159298
  46. M. S. Dresselhaus and I. L. Thomas, "Alternative Energy Technologies," Nature, 414, 332-37 (2001). https://doi.org/10.1038/35104599
  47. J. Larminie and A. Dicks, "Fuel Cell Systems Explained," Second Edition, John Wiley & Sons, 2003.
  48. K. D. Kreuer, "On the Development of Proton Conducting Materials for Technological Applications," Solid State Ionics, 97 [1-4] 1-15 (1997). https://doi.org/10.1016/S0167-2738(97)00082-9
  49. E. D. Wachsman and K. D. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  50. K. Scott, C. Xu, and X. Wu, "Intermediate Temperature Proton-conducting Membrane Electrolytes for Fuel Cells," WIREs Energy Environ.,3 [1] 24-41 (2014). https://doi.org/10.1002/wene.64

Cited by

  1. with Yb and In Doping vol.162, pp.7, 2015, https://doi.org/10.1149/2.0011508jes