DOI QR코드

DOI QR Code

Effects of SLA surface treated with NaOH on surface characteristics and response of osteoblast-like cell

염기처리한 SLA 표면이 표면 특성 및 골모유사세포의 반응에 미치는 영향

  • Park, Jin-Chul (Graduate School of Clinical Dental Medicine, Korea University) ;
  • Kim, Joo-Hyeun (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kang, Eun-Sook (Department of Prosthodontics, In-Je University Haeundae Paik Hospital) ;
  • Ryu, Jae-Jun (Division of Prosthodontics, Department of Dentistry, Korea University Anam Hospital,Medical Center) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 박진철 (고려대학교 임상치의학대학원 심미보철과) ;
  • 김주현 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 강은숙 (인제대학교 해운대백병원 보철과) ;
  • 류재준 (고려대학교 안암병원 치과보철과) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2014.06.02
  • Accepted : 2014.07.01
  • Published : 2014.07.31

Abstract

Purpose: The purpose of this study was to evaluate the surface characteristics and response of osteoblast-like cell at SLA surface treated with NaOH. Materials and methods: Three kinds of specimens were fabricated for the experiment groups. Control group was a machined surface, SLA group was a conventionally SLA treated surface, and SLA/NaOH gorup was SLA surface treated with NaOH. To evaluate the surface characteristics, the surface elemental composition (XPS), surface roughness and surface contact angle were evaluated in each group. And the cytotoxicity, cell adhesion, cell proliferation and ATP activity of osteoblast-like cells (MG-63 cells) were compared in each group for evaluatation of the cell responses. Statistical comparisons between groups were carried out via one-way ANOVA using the SPSS software (SPSS Inc., Chicago, USA), and then performed multiple comparisons. The differences were considered statistically significant at P<.05. Results: SLA surface treated with NaOH (SLA / NaOH group) was changed to hydrophilic surface. All groups did not show the cytotoxicity to the MG-63. In cell adhesion studies, SLA / NaOH group showed the higher degree of adhesion than anothers (P<.05), Up to 7 days of incubation, the proliferation was showed the increasing tendency in all groups but SLA / NaOH group showed the highest cell proliferation between the three groups (P<.05). At 7 days of incubation, there was no difference in ALP activities between the three groups, but at 14 days, SLA / NaOH group showed significant increase in ALP activities (P<.05). Conclusion: In this study, SLA surface treated with NaOH promoted cell adhesion, proliferation and differentiation. It means that SLA/NaOH group is possible to promote osseointegration of implants.

References

  1. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100. https://doi.org/10.3109/02844316909036699
  2. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416. https://doi.org/10.1016/S0300-9785(81)80077-4
  3. Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 1996;7:329-36. https://doi.org/10.1034/j.1600-0501.1996.070405.x
  4. Lekholm U, Gunne J, Henry P, Higuchi K, Linden U, Bergstrom C, van Steenberghe D. Survival of the Branemark implant in partially edentulous jaws: a 10-year prospective multicenter study. Int J Oral Maxillofac Implants 1999;14:639-45.
  5. Brocard D, Barthet P, Baysse E, Duffort JF, Eller P, Justumus P, Marin P, Oscaby F, Simonet T, Benque′E, Brunel G. A multicenter report on 1,022 consecutively placed ITI implants: a 7-year longitudinal study. Int J Oral Maxillofac Implants 2000;15:691-700.
  6. Jemt T, Johansson J. Implant treatment in the edentulous maxillae: a 15-year follow-up study on 76 consecutive patients provided with fixed prostheses. Clin Implant Dent Relat Res 2006;8:61-9. https://doi.org/10.1111/j.1708-8208.2006.00003.x
  7. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70. https://doi.org/10.3109/17453678108991776
  8. Hutton JE, Heath MR, Chai JY, Harnett J, Jemt T, Johns RB, McKenna S, McNamara DC, van Steenberghe D, Taylor R, et al. Factors related to success and failure rates at 3-year follow- up in a multicenter study of overdentures supported by Branemark implants. Int J Oral Maxillofac Implants 1995;10:33-42.
  9. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 1991;62:2-4. https://doi.org/10.1902/jop.1991.62.1.2
  10. Sullivan DY, Sherwood RL, Mai TN. Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants. J Prosthet Dent 1997;78:379-86. https://doi.org/10.1016/S0022-3913(97)70045-3
  11. Le Gue′hennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  12. Lee YJ, Lee BU, Kim YS. Current studies of implant surface treatment- in perspective of bone healing mechanism. Implantology 2003;12:12-29.
  13. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000;82:457-76. https://doi.org/10.1302/0301-620X.82B3.9310
  14. Song HJ. Advanced surface modification techniques for enhancing osseointegration of titanium implant. J Korean Dent Assoc 2010;48:97-105.
  15. Sanz A, Oyarzun A, Farias D, Diaz I. Experimental study of bone response to a new surface treatment of endosseous titanium implants. Implant Dent 2001;10:126-31. https://doi.org/10.1097/00008505-200104000-00009
  16. Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 2002;28:2-8. https://doi.org/10.1563/1548-1336(2002)028<0002:BRTMAR>2.3.CO;2
  17. Lee HJ, Song KY, Yoon TH. Effect of different surface treatments to increase biocompatibility of dental implant. J Korean Acad Prosthodont 2006;44:594-605.
  18. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
  19. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902. https://doi.org/10.1002/jbm.820250708
  20. Bornstein MM, Schmid B, Belser UC, Lussi A, Buser D. Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface. 5-year results of a prospective study in partially edentulous patients. Clin Oral Implants Res 2005;16:631-8. https://doi.org/10.1111/j.1600-0501.2005.01209.x
  21. Sul YT, Johansson CB, Albrektsson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implants 2002;17:625-34.
  22. Sul YT, Johansson CB, Jeong Y, Roser K, Wennerberg A, Albrektsson T. Oxidized implants and their influence on the bone response. J Mater Sci Mater Med 2001;12:1025-31. https://doi.org/10.1023/A:1012837905910
  23. Kokubo T, Kim HM, Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J Mater Sci Mater Med 2004;15:99-107.
  24. Kilpadi DV, Lemons JE. Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res 1994;28:1419-25. https://doi.org/10.1002/jbm.820281206
  25. MacDonald DE, Deo N, Markovic B, Stranick M, Somasundaran P. Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials 2002;23:1269-79. https://doi.org/10.1016/S0142-9612(01)00317-9
  26. Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 2004;25:1429-38. https://doi.org/10.1016/j.biomaterials.2003.08.015
  27. Lim YJ, Oshida Y, Andres CJ, Barco MT. Surface characterizations of variously treated titanium materials. Int J Oral Maxillofac Implants 2001;16:333-42.
  28. Yanagisawa I, Sakuma H, Shimura M, Wakamatsu Y, Yanagisawa S, Sairenji E. Effects of "wettability" of biomaterials on culture cells. J Oral Implantol 1989;15:168-77.
  29. Smith DC, Pilliar RM, Chernecky R. Dental implant materials. I. Some effects of preparative procedures on surface topography. J Biomed Mater Res 1991;25:1045-68. https://doi.org/10.1002/jbm.820250902
  30. MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL. Thermal and chemical modification of titaniumaluminum- vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 2004;25:3135-46. https://doi.org/10.1016/j.biomaterials.2003.10.029
  31. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis- Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 2006;76:323-34.
  32. Kim C, Kendall MR, Miller MA, Long CL, Larson PR, Humphrey MB, Madden AS, Tas AC. Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions. Mater Sci Eng C Mater Biol Appl 2013;33:327-339. https://doi.org/10.1016/j.msec.2012.08.047
  33. Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hjorting-Hansen E. Anchorage of $TiO_2$-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 1995;29:1223-31. https://doi.org/10.1002/jbm.820291009
  34. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 1995;6:24-30. https://doi.org/10.1034/j.1600-0501.1995.060103.x
  35. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932-49.
  36. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M. Roughness response genes in osteoblasts. Bone 2004;35:124-33. https://doi.org/10.1016/j.bone.2004.03.009
  37. Wennerberg A, Albrektsson T, Ulrich H, Krol JJ. An optical threedimensional technique for topographical descriptions of surgical implants. J Biomed Eng 1992;14:412-8. https://doi.org/10.1016/0141-5425(92)90087-2
  38. Kilpadi DV, Lemons JE. Surface energy characterization of unalloyed titanium implants. J Biomed Mater Res 1994;28:1419-25. https://doi.org/10.1002/jbm.820281206
  39. MacDonald DE, Deo N, Markovic B, Stranick M, Somasundaran P. Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials 2002;23:1269-79. https://doi.org/10.1016/S0142-9612(01)00317-9
  40. Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 2004;25:1429-38. https://doi.org/10.1016/j.biomaterials.2003.08.015
  41. Clover J, Gowen M. Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 1994;15:585-91. https://doi.org/10.1016/8756-3282(94)90305-0
  42. Lai HC, Zhuang LF, Liu X, Wieland M, Zhang ZY, Zhang ZY. The influence of surface energy on early adherent events of osteoblast on titanium substrates. J Biomed Mater Res A 2010;93:289-96.