DOI QR코드

DOI QR Code

Association of Novel Polymorphisms in Lymphoid Enhancer Binding Factor 1 (LEF-1) Gene with Number of Teats in Different Breeds of Pig

  • Xu, Ru-Xiang (Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University) ;
  • Wei, Ning (Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University) ;
  • Wang, Yu (Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University) ;
  • Wang, Guo-Qiang (Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University) ;
  • Yang, Gong-She (Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University) ;
  • Pang, Wei-Jun (Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University)
  • Received : 2013.11.29
  • Accepted : 2014.04.14
  • Published : 2014.09.01

Abstract

Lymphoid enhancer binding factor 1 (LEF-1) is a member of the T-cell specific factor (TCF) family, which plays a key role in the development of breast endothelial cells. Moreover, LEF-1 gene has been identified as a candidate gene for teat number trait. In the present study, we detected two novel mutations (NC_010450.3:g. 99514A>G, 119846C>T) by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism in exon 4 and intron 9 of LEF-1 in Guanzhong Black, Hanjiang Black, Bamei and Large White pigs. Furthermore, we analyzed the association between the genetic variations with teat number trait in these breeds. The 99514A>G mutation showed an extremely significant statistical relevance between different genotypes and teat number trait in Guanzhong (p<0.001) and Large White (p = 0.002), and significant relevance in Hanjiang (p = 0.017); the 119846C>T mutation suggested significant association in Guanzhong Black pigs (p = 0.042) and Large White pigs (p = 0.003). The individuals with "AG" or "GG" genotype displayed more teat numbers than those with "AA"; the individuals with "TC" or "CC" genotype showed more teat numbers than those with "TT". Our findings suggested that the 99514A>G and 119846C>T mutations of LEF-1 affected porcine teat number trait and could be used in breeding strategies to accelerate porcine teat number trait improvement of indigenous pigs breeds through molecular marker assisted selection.

Keywords

Pig;LEF-1 Gene;Expression Profile;Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RLFP);Teat Number;Haplotype

References

  1. Balinsky, B. I. 1950. On the prenatal growth of the mammary rudiment in the mouse. J. Anat. 84:227-235.
  2. Davenport, T. G., L. A. Jerome-Majewska, and V. E. Papaioannou. 2003. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar-mammary syndrome. Development 130:2263-2273. https://doi.org/10.1242/dev.00431
  3. Eblaghie, M. C., S. J. Song, J. Y. Kim, K. Akita, C. Tickle, and H. S. Jung. 2004. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. J. Anat. 205:1-13. https://doi.org/10.1111/j.0021-8782.2004.00309.x
  4. Holnthoner, W., M. Pillinger, M. Groger, K. Wolff, A. W. Ashton, C. Albanese, P. Neumeister, R. G. Pestell, and P. Petzelbauer. 2002. Fibroblast growth factor-2 Induces Lef/Tcf-dependent transcription in human endothelial cells. J. Biol. Chem. 277:45847-45853. https://doi.org/10.1074/jbc.M209354200
  5. Gebeshuber, C. A., S. Sladecek, and S. Grunert. 2007. Beta-catenin/LEF-1 signaling in breast cancer-central players activated by a plethora of inputs. Cells Tissues Organs 185:51-60. https://doi.org/10.1159/000101303
  6. Jerome-Majewska, L. A., G. P. Jenkins, E. Ernstoff, F. Zindy, C. J. Sherr, and V. E. Papaioannou. 2005. Tbx3, the ulnar-mammary syndrome gene, and Tbx2 interact in mammary gland development through a p19Arf / p53-independent pathway. Dev. Dyn. 234:922-933. https://doi.org/10.1002/dvdy.20575
  7. Jonas, E., H. J. Schreinemachers, T. Kleinwachter, C. Un, I. Oltmanns, S. Tetzlaff, D. Jennen, D. Tesfaye, S. Ponsuksili, E. Murani, H. Juengst, E. Tholen, K. Schellander, and K. Wimmers. 2008. QTL for the heritable inverted teat defect in pigs. Mamm. Genome 19:127-138. https://doi.org/10.1007/s00335-007-9086-5
  8. Bamshad, M., R. C. Lin, D. J. Law, W. S. Watkins, P. A. Krakowiak, M. E. Moore, P. Franceschini, R. Lala, L. B. Holmes, T. C. Gebuhr, B. G. Bruneau, A. Schinzel, J. G. Seidman, C. E. Seidman, and L. B. Jorde. 1997. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat. Genet. 16:311-315. https://doi.org/10.1038/ng0797-311
  9. Boras-Granic, K., H. Chang, R. Grosschedl, and P. A. Hamel. 2006. Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev. Biol. 295:219-231. https://doi.org/10.1016/j.ydbio.2006.03.030
  10. Bucan, V., K. Mandel, C. Bertram, A. Lazaridis, K. Reimers, T. W. Park-Simon, P. M. Vogt, and R. Hass. 2012. LEF-1 regulates proliferation and MMP-7 transcription in breast cancer cells. Genes Cells 17:559-567. https://doi.org/10.1111/j.1365-2443.2012.01613.x
  11. Cho, K. W., J. Y. Kim, S. J. Song, E. Farrell, M. C. Eblaghie, H. J. Kim, C. Tickle, and H. S. Jung. 2006. Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development. Proc. Natl. Acad. Sci. 103:16788-16793. https://doi.org/10.1073/pnas.0604645103
  12. Chu, E. Y., J. Hens, T. Andl, A. Kairo, T. P. Yamaguchi, C. Brisken, A. Glick, J. J. Wysolmerski, and S. E. Millar. 2004. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131:4819-4829. https://doi.org/10.1242/dev.01347
  13. Arce, L., N. N. Yokoyama, and M. L.Waterman. 2006. Diversity of LEF/TCF action in development and diseases. Oncogene 25:7492-7504. https://doi.org/10.1038/sj.onc.1210056
  14. Wiesner, E. and S. Willer. 1978. Problems of occurrence of inverted nipples in swine. Monatshefte. Fur. Veterinarmedi-zin. 33:189-190.
  15. Xie, X., J. Lu, E. J. Kulbokas, T. R. Golub, V. Mootha, K. Lindblad-Toh, E. S. Lander, and M. Kellis. 2005. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature 434:338-345. https://doi.org/10.1038/nature03441
  16. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York, USA.
  17. Sham, P., J. S. Bader, I. Craig, M. O'Donovan, and M. Owen. 2002. DNA Pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3:862-871. https://doi.org/10.1038/nrg930
  18. Tetzlaff, S., S. Chomdej, E. Jonas, S. Ponsuksili, E. Murani, C. Phatsara, K. Schellander and K. Wimmers. 2009. Association of parathyroid hormone-like hormone (PTHLH) and its receptor (PTHR1) with the number of functional and inverted teats in pigs. J. Anim. Breed. Genet. 126:237-241. https://doi.org/10.1111/j.1439-0388.2008.00781.x
  19. Tetzlaff, S., E. Jonas, C. Phatsara, E. Murani, S. Ponsuksili, K. Schellander, and K. Wimmers. 2009. Evidence for association of lymphoid enhancer-binding factor-1 (LEF1) with the number of functional and inverted teats in pigs. Cytogenet. Genome Res. 124:139-146. https://doi.org/10.1159/000207521
  20. van Genderen, C., R. M. Okamura, I. Farinas, R. G. Quo, T. G. Parslow, L. Bruhn, and R. Grosschedl. 1994. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8:2691-2703. https://doi.org/10.1101/gad.8.22.2691
  21. Veltmaat, J. M., F. Relaix, L. T. Le, K. Kratochwil, F. G. Sala, W. van Veelen, R. Rice, B. Spencer-Dene, A. A. Mailleux, D. P. Rice, J. P. Thiery, and S. Bellusci. 2006. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133:2325-2335. https://doi.org/10.1242/dev.02394
  22. Veltmaat, J. M., W. Van Veelen, J. P. Thiery, and S. Bellusci. 2004. Identification of the mammary line in mouse by Wnt10b expression. Dev. Dyn. 229:349-356. https://doi.org/10.1002/dvdy.10441
  23. Wang, F., S. Reierstad, and D. A. Fishman. 2006. Matrilysin over-expression in MCF-7 cells enhances cellular invasiveness and pro-gelatinase activation. Cancer Let. 236:292-301. https://doi.org/10.1016/j.canlet.2005.05.042
  24. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta \Delta{CT}}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  25. Mailleux, A. A., B. Spencer-Dene, C. Dillon, D. Ndiaye, C. Savona-Baron, N. Itoh, S. Kato, C. Dickson, J. P. Thiery, and S. Bellusci. 2002. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129:53-60.
  26. Mateescu, R. G., Z. Zhang, K. Tsai, J. Phavaphutanon, N. I. Burton-Wurster, G. Lust, R. Quaas, K. Murphy, G. M. Acland, and R. J. Todhunter. 2005. Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. J. Hered. 96:847-853. https://doi.org/10.1093/jhered/esi109
  27. Nei, M. and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76:5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  28. Ravindranath, A., A. O'Connell, P. G. Johnston, and M. K. El-Tanani. 2008. The role of LEF/TCF factors in neoplastic transformation. Curr. Mol. Med. 8:38-50. https://doi.org/10.2174/156652408783565559