DOI QR코드

DOI QR Code

Genome-wide Association Study for Warner-Bratzler Shear Force and Sensory Traits in Hanwoo (Korean Cattle)

  • Dang, C.G. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration) ;
  • Cho, S.H. (Animal Product Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Sharma, A. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, H.C. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration) ;
  • Jeon, G.J. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration) ;
  • Yeon, S.H. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration) ;
  • Hong, S.K. (National Institute of Animal Science, Rural Development Administration) ;
  • Park, B.Y. (Animal Product Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kang, H.S. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, S.H. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
  • Received : 2013.10.29
  • Accepted : 2014.04.11
  • Published : 2014.09.01

Abstract

Significant SNPs associated with Warner-Bratzler (WB) shear force and sensory traits were confirmed for Hanwoo beef (Korean cattle). A Bonferroni-corrected genome-wide significant association (p< $1.3{\times}10^{-6}$) was detected with only one single nucleotide polymorphism (SNP) on chromosome 5 for WB shear force. A slightly higher number of SNPs was significantly (p<0.001) associated with WB shear force than with other sensory traits. Further, 50, 25, 29, and 34 SNPs were significantly associated with WB shear force, tenderness, juiciness, and flavor likeness, respectively. The SNPs between p = 0.001 and p = 0.0001 thresholds explained 3% to 9% of the phenotypic variance, while the most significant SNPs accounted for 7% to 12% of the phenotypic variance. In conclusion, because WB shear force and sensory evaluation were moderately affected by a few loci and minimally affected by other loci, further studies are required by using a large sample size and high marker density.

Keywords

Genome-wide Association Study;Warner-Bratzler Shear Force;Sensory Traits;Hanwoo Beef

Acknowledgement

Supported by : National Institute of Animal Science

References

  1. White, S. N., E. Casas, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, Jr., D. D. Johnson, J. W. Keele, and T. P. L. Smith. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83:2001-2008. https://doi.org/10.2527/2005.8392001x
  2. Caine, W. R., J. L. Aalhus, D. R. Best, M. E. R. Dugan, and L. E. Jeremiah. 2003. Relationship of texture profiles analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 64:333-339. https://doi.org/10.1016/S0309-1740(02)00110-9
  3. Carmack, C. F., C. L. Kastner, M. E. Dikeman, J. R. Schwenke, and C. M. Garcia Zepeda. 1995. Sensory evaluation of beef flavor intensity, tenderness and juiciness among major muscles. Meat Sci. 39:143-147. https://doi.org/10.1016/0309-1740(95)80016-6
  4. Rolf, M. M., S. D. Mckay, M. C. McClure, J. E. Decker, T. M. Taxis, R. H. Chapple, D. A. Vasco, S. J. Gregg, J. W. Kim, R. D. Schnabel, and J. F. Taylor. 2010. How the next generation of genetic technologies will impact beef cattle selection. Proceedings of the Beef Improvement Federations 42nd Annual Research Symposium and Annual Meeting, Columbia, MO, USA. 46-56.
  5. Schenkel, F. S., S. P. Miller, Z. Jiang, I. B. Mandell, X. Ye, H. Li, and J. W. Wilton. 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 84:291-299. https://doi.org/10.2527/2006.842291x
  6. Shackelford, S. D., T. L. Wheeler, M. K. Meade, J. O. Reagan, B. L. Byrnes and M. Koohmaraie. 2001. Consumer impressions of Tender Select beef. J. Anim. Sci. 79:2605-2614. https://doi.org/10.2527/2001.79102605x
  7. Shackelford, S. D., T. L. Wheeler, and M. Koohmaraie. 2005. On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. eat Sci. 69:409-415. https://doi.org/10.1016/j.meatsci.2004.08.011
  8. Shahidi, F. and L. J. Rubin. 1986. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluations. CRC Crit. Rev. Food Sci. Nutr. 24:141-243. https://doi.org/10.1080/10408398609527435
  9. Wheeler, T. L., S. D. Shackelford, and M. Koohmaraie. 2000. Relationship of beef longissimus tenderness classes to tenderness of gluteus medius, semimembranosus, and biceps femoris. J. Anim. Sci. 78:2856-2861. https://doi.org/10.2527/2000.78112856x
  10. Destefanis, G., A. Brugiapaglia, M. T. Barge, and E. Dal Molin. 2008. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci. 78:153-156. https://doi.org/10.1016/j.meatsci.2007.05.031
  11. Drinkwater, R. D., Y. Li, I. Lenane, G. P. Davis, R. Shorthose, B. E. Harrison, K. Richardson, D. Ferguson, R. Stevenson, J. Renaud, I. Loxton, R. J. Hawken, M. B. Thomas, S. Newman, D. J. S. Hetzel, and W. Barendse. 2006. Detecting quantitative trait loci affecting beef tenderness on bovine chromosome 7 near calpastatin and lysyl oxidase. Aust. J. Exp. Agric. 46:159-164. https://doi.org/10.1071/EA05185
  12. Dunner, S., N. Sevane, D. Garcia, O. Cortes, A. Valentini, J. L. Williams, B. Mangin, J. Canon, and H. Leveziel. 2013. The GeMQual consortium. Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livest. Sci. 154:34-44. https://doi.org/10.1016/j.livsci.2013.02.020
  13. Jeremiah, L. E. 1982. Consumer preferences regarding cooking methods and times for beef loin steaks in central Alberta. J. Consum. Stud. Home Econ. 6:79 -86. https://doi.org/10.1111/j.1470-6431.1982.tb00587.x
  14. Keele, J. W., S. D. Shackelford, S. M. Kappes, M. Koohmaraie, and R. T. Stone. 1999. A region on bovine chromosome 15 influences beef longissimus tenderness in steers. J. Anim. Sci. 77:1364-1371. https://doi.org/10.2527/1999.7761364x
  15. Casas, E. 2002. Identification of quantitative trait loci in beef cattle. Archivos Latinoamericanos de Produccion Anim. 10: 54-61.
  16. Casas, E., S. N. White, D. G. Riley, T. P. L. Smith, R. A. Brenneman, T. A. Olson, D. D. Johnson, S. W. Coleman, G. L. Bennett, and C. C. Chase. 2005. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J. Anim. Sci. 83:13-19. https://doi.org/10.2527/2005.83113x
  17. Bolormaa, S., L. R. Porto Neto, Y. D. Zhang, R. J. Bunch, B. E. Harrison, M. E. Goddard, and W. Barendse. 2011. A genome-wide association study of meat and carcass traits in Australian cattle. J. Anim. Sci. 89:2297-2309. https://doi.org/10.2527/jas.2010-3138
  18. Meuwissen, T. H. E. and M. E. Goddard. 2000. Fine mapping quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155:421-430.
  19. Miller, M. F., M. A. Carr, C. B. Ramsey, K. L. Crokett, and L. C. Hoover. 2001. Consumer thresholds for establishing the values of beef tenderness. J. Anim. Sci. 79:3062-3068. https://doi.org/10.2527/2001.79123062x
  20. Page, B. T., E. Casas, M. P. Heaton, N. G. Cullen, D. L. Hyndman, C. A. Morris, A. M. Crawford, T. L. Wheeler, M. Koohmaraie, J. W. Keele, and T. P. L. Smith. 2002. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80:3077-3085. https://doi.org/10.2527/2002.80123077x
  21. Page, B. T., E. Casas, R. L. Quaas, R. M. Thallman, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, S. N. White, G. L. Bennett, J. W. Keele, M. E. Dikeman, and T. P. L. Smith. 2004. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J. Anim. Sci. 82:3474-3481. https://doi.org/10.2527/2004.82123474x
  22. Pausch, H., K. Flisikowski, S. Jung, R. Emmerling, C. Edel, K. Gotz, and R. Fries. 2011. Genome-wide association study identifies two major loci affecting calving ease and growth-related traits in cattle. Genetics 187:289-297. https://doi.org/10.1534/genetics.110.124057
  23. Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, D. D. Johnson, and T. P. L. Smith. 2006. Effects of calpastatin and (micro)-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84: 520-525. https://doi.org/10.2527/2006.843520x
  24. Cho, S. H., J. Kim, B. Y. Park, P. N. Seong, G. H. Kim, S. G. Jung, S. K. Im, and D. H. Kim. 2010. Assessment of meat quality properties and development of a palatability prediction model for Korean Hanwoo steer beef. Meat Sci. 86:236-242. https://doi.org/10.1016/j.meatsci.2010.05.011
  25. Koohmaraie, M. 1994. Muscle proteinases and meat ageing. Meat Sci. 36:93-104. https://doi.org/10.1016/0309-1740(94)90036-1
  26. Koohmaraie, M., M. P. Kent, S. D. Shackleford, E. Veiseth, and T. L. Wheeler. 2002. Meat tenderness and muscle growth: Is there any relationship. Meat Sci. 62:345-352. https://doi.org/10.1016/S0309-1740(02)00127-4
  27. Lee, S. H., S. C. Kim, H. H. Chai, S. H. Cho, D. J. Lim, B. H. Choi, C. G. Dang, C. Gondro, B. S. Yang, and S. K. Hong. 2013. Mutations in calpastatin and $\mu$-calpain are associated with meat tenderness, flavor, and juiciness of Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/$\mu$-calpain complex. Meat Sci. 96:1501-1508.
  28. Love, J. 1994. Product acceptability evaluation. In: Quality Attributes and Their Measurement in Meat, Poultry and Fish Products. (Eds. A. M. Pearson and T. R. Dutson). Blackie Academic and Professional, Glasgow, UK. Adv. Meat Res. 9:337-358.
  29. Marshall, D. M. 1999. Genetics of Meat Quality. CABI International, Oxfordshire, UK.
  30. Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. O'Connell, S. S. Moore, T. P. L. Smith, T. S. Sonstegard, and C. P. VanTassell. 2009. Development and characterization of a high density SNP genotyping assay for cattle. Plos one. 4(4):e5350. https://doi.org/10.1371/journal.pone.0005350

Cited by

  1. Genome-Wide Association Study Reveals the PLAG1 Gene for Knuckle, Biceps and Shank Weight in Simmental Beef Cattle vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0168316
  2. Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle1 vol.94, pp.7, 2016, https://doi.org/10.2527/jas.2016-0279
  3. muscle and its relationships with intramuscular fat, shear force, and environmental factors vol.98, pp.3, 2018, https://doi.org/10.1139/cjas-2017-0064
  4. Functional Partitioning of Genomic Variance and Genome-Wide Association Study for Carcass Traits in Korean Hanwoo Cattle Using Imputed Sequence Level SNP Data vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00217
  5. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-5518-3