DOI QR코드

DOI QR Code

Changes in Hematological, Biochemical and Non-specific Immune Parameters of Olive Flounder, Paralichthys olivaceus, Following Starvation

  • Kim, Jong-Hyun (Aquaculture Research Institute, National Fisheries Research and Development Institute) ;
  • Jeong, Min Hwan (Aquaculture Research Institute, National Fisheries Research and Development Institute) ;
  • Jun, Je-Cheon (Aquaculture Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Tae-Ik (Southwest Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • Received : 2014.02.13
  • Accepted : 2014.04.24
  • Published : 2014.09.01

Abstract

Triplicate groups of fed and starved olive flounder, Paralichthys olivaceus (body weight: $119.8{\pm}17.46$ g), were examined over 42 days for physiological changes using hematological, biochemical, and non-specific immune parameters. No significant differences in concentrations of blood hemoglobin and hematocrit and plasma levels of total cholesterol, aspartate aminotransferase, alanine aminotransferase, glucose, and cortisol were detected between fed and starved groups at any sampling time throughout the experiment. In contrast, plasma total protein concentrations were significantly lower in starved fish than in fed fish from day 7 onwards. Moreover, plasma lysozyme concentrations were significantly higher in starved flounder from day 21 onwards. This result confirms that the response of olive flounder to short-term (less than about 1.5 months) starvation consists of a readjustment of metabolism rather than the activation of an alarm-stress response. The present results indicate that starvation does not significantly compromise the health status of fish despite food limitation.

Keywords

Olive Flounder;Paralichthys olivaceus;Growth;Hematological Response;Biochemical Response;Lysozyme Activity;Food Deprivation

Acknowledgement

Supported by : National Fisheries Research

References

  1. Park, I. -S., S. R. Woo, E. -M. Kim, and S. H. Cho. 2006. Effect of feeding and starvation on growth and phenotypic trait in olive flounder, Paralichthys olivaceus (Temminck et Schlegel). J. Aquacult. 19:183-187.
  2. Park, I. -S., S. R. Woo, Y. -C. Song, and S. H. Cho. 2007. Effects of starvation on morphometric characteristics of olive flounder, Paralichthys olivaceus. Ichthyol. Res. 54:297-302. https://doi.org/10.1007/s10228-007-0404-4
  3. Parry, R. M., R. C. Chandon, and K. M. Shahani. 1965. A rapid and sensitive assay of muramidase. Proc. Soc. Exp. Biol. Med. 119:384-386. https://doi.org/10.3181/00379727-119-30188
  4. Rueda, F. M., F. J. Martinez, S. Zamora, M. Kentouri, and P. Divanach. 1998. Effect of fasting and refeeding on growth and body composition of red porgy, Pagrus pagrus L. Aquac. Res. 29:447-452.
  5. Shim, K. B., S. J. Lee, H. D. Yoon, C. W. Lim, Y. K. Shin, M. H. Jeong, D. G. Lee, and T. I. Park. 2012. Effects of low temperature and starvation on the physicochemical characteristics of muscle of the olive flounder Paralichthys olivaceus. Korean J. Fish. Aquat. Sci. 45:430-437. https://doi.org/10.5657/KFAS.2012.0430
  6. Small, B. C. 2005. Effect of fasting on nychthemeral concentrations of plasma growth hormone (GH), insulin-like growth factor I (IGF-I), and cortisol in channel catfish (Ictalurus punctatus). Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 142B:217-223.
  7. Heming, T. A. and E. J. Paleczny. 1987. Compositional changes in skin mucus and blood serum during starvation of trout. Aquaculture 66:265-273. https://doi.org/10.1016/0044-8486(87)90112-8
  8. Hemre, G. -I. O. Lie, and A. Sundby. 1993. Dietary carbohydrate utilization in cod (Gadus morhua): metabolic responses to feeding and fasting. Fish Physiol. Biochem. 10:455-463. https://doi.org/10.1007/BF00004600
  9. Hur, J. W., J. H. Jo, and I. -S. Park. 2006a. Effects of long-term starvation on hepatocyte ultrastructure of olive flounder Paralichthys olivaceus. Ichthyol. Res. 53:306-310. https://doi.org/10.1007/s10228-006-0348-0
  10. Hur, J. W., S. R. Woo, J. H. Jo, and I. -S. Park. 2006b. Effects of starvation on kidney melano-macrophage center in olive flounder, Paralichthys olivaceus (Temminck and Schlegel). Aquac. Res. 37:821-825. https://doi.org/10.1111/j.1365-2109.2006.01498.x
  11. Ince, B. W. and A. Thorpe. 1976. The effects of starvation and force-feeding on the metabolism of the northern pike, Esox lucius L. J. Fish Biol. 8:79-88. https://doi.org/10.1111/j.1095-8649.1976.tb03909.x
  12. Johansson-Sjobeck, M. -L., G. Dave, A. Larsson, K. Lewander, and U. Lidman. 1975. Metabolic and hematological effects of starvation in the European eel, Anguilla anguilla L. II. Hematology. Comp. Biochem. Physiol. A Physiol. 52A:431-434.
  13. Larsen, D. A., B. R. Beckman, and W. W. Dickhoff. 2001. The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (insulin, insulin-like growth factor-I, and thyroxine) of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 123:308-323. https://doi.org/10.1006/gcen.2001.7677
  14. Ogata, H. Y., H. Oku, and T. Murai. 2002. Growth performance and macronutrient retention of offspring from wild and selected red sea bream (Pagrus major). Aquaculture 206:279-287. https://doi.org/10.1016/S0044-8486(01)00681-0
  15. Park, I. -S., J. W. Hur, and J. W. Choi. 2012. Hematological responses, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. Asian Australas. J. Anim. Sci. 25:1276-1284. https://doi.org/10.5713/ajas.2012.12128
  16. Cho, S. H., S. -M. Lee, B. H. Park, S. -C. Ji, J. Lee, J. Bae, and S. -Y. Oh. 2006. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J. World Aquac. Soc. 37:168-174. https://doi.org/10.1111/j.1749-7345.2006.00023.x
  17. Collins, A. L. and T. A. Anderson. 1995. The regulation of endogeneous energy stores during starvation and refeeding in the somatic tissues of the golden perch. J. Fish Biol. 47:1004-1015. https://doi.org/10.1111/j.1095-8649.1995.tb06024.x
  18. Costas, B., C. Aragao, I. Ruiz-Jarabo, L. Vargas-Chacoff, F. J. Arjona, M. T. Dinis, J. M. Mancera, and L. E. C. Conceicao. 2011. Feed deprivation in Senegalese sole (Solea senegalensis Kaup, 1858) juveniles: effects on blood plasma metabolites and free amino acid levels. Fish Physiol. Biochem. 37:495-504. https://doi.org/10.1007/s10695-010-9451-2
  19. Dave, G., M. -L. Johansson-Sjobeck, A. Larsson, K. Lewander, and U. Lidman. 1975. Metabolic and hematological effects of starvation in the European eel, Anguilla anguilla L. I. Carbohydrate, lipid, protein and inorganic ion metabolism. Comp. Biochem. Physiol. A. Physiol. 52A:423-430.
  20. Davis, K. B. and T. G. Gaylord. 2011. Effect of fasting on body composition and responses to stress in sunshine bass. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158A:30-36.
  21. Farbridge, K. J. and J. F. Leatherland. 1992. Plasma growth hormone levels in fed and fasted rainbow trout (Oncorhynchus mykiss) are decreased following handling stress. Fish Physiol. Biochem. 10:67-73. https://doi.org/10.1007/BF00004655
  22. Feng, G., X. Shi, X. Huang, and P. Zhuang. 2011. Oxidative stress and antioxidant defenses after long-term fasting in blood of Chinese sturgeon (Acipenser sinensis). Procedia Environ. Sci. 8:469-475. https://doi.org/10.1016/j.proenv.2011.10.074
  23. Gillis, T. E. and J. S. Ballantyne. 1996. The effects of starvation on plasma free amino acid and glucose concentrations in lake sturgeon. J. Fish Biol. 49:1306-1316. https://doi.org/10.1111/j.1095-8649.1996.tb01797.x
  24. Barcellos, L. J. G., A. Marqueze, M. Trapp, R. M. Quevedo, and D. Ferreira. 2010. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundia Rhamdia quelen. Aquaculture 300:231-236. https://doi.org/10.1016/j.aquaculture.2010.01.013
  25. Barton, B. A., C. B. Schreck, and L. G. Fowler. 1988. Fasting and diet content affect stress-induced changes in plasma glucose and cortisol in juvenile chinook salmon. Prog. Fish Cult. 50:16-22. https://doi.org/10.1577/1548-8640(1988)050<0016:FADCAS>2.3.CO;2
  26. Caruso, G., G. Maricchiolo, V. Micale, L. Genovese, R. Caruso, and M. G. Denaro. 2010. Physiological responses to starvation in the European eel (Anguilla anguilla): effects on haematological, biochemical, non-specific immune parameters and skin structures. Fish Physiol. Biochem. 36:71-83. https://doi.org/10.1007/s10695-008-9290-6
  27. Caruso, G., M. G. Denaro, R. Caruso, F. Mancari, L. Genovese, and G. Maricchiolo. 2011. Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Mar. Environ. Res. 72:46-52. https://doi.org/10.1016/j.marenvres.2011.04.005
  28. Caruso, G., M. G. Denaro, R. Caruso, L. Genovese, F. Mancari, and G. Maricchiolo. 2012. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some haematological, biochemical and non specific immune parameters. Mar. Environ. Res. 81:18-25. https://doi.org/10.1016/j.marenvres.2012.07.003
  29. Chatzifotis, S., M. Papadaki, S. Despoti, C. Roufidou, and E. Antonopoulou. 2011. Effect of starvation and re-feeding on reproductive indices, body weight, plasma metabolites and oxidative enzymes of sea bass (Dicentrarchus labrax). Aquaculture 316:53-59. https://doi.org/10.1016/j.aquaculture.2011.02.044
  30. Cho, S. H. 2009. Effect of fasting and refeeding on growth and blood chemistry in juvenile olive flounder Paralichthys olivaceus L. J. Aquac. 22:11-15.
  31. Bandeen, J. and J. F. Leatherland. 1997. Changes in the proximate composition of juvenile white suckers following re-feeding after a prolonged fast. Aquac. Int. 5:327- 337. https://doi.org/10.1023/A:1018312123344

Cited by

  1. (Walbaum 1792) vol.48, pp.2, 2016, https://doi.org/10.1111/jwas.12336
  2. Protein and lipid metabolism adjustments in silver catfish (Rhamdia quelen) during different periods of fasting and refeeding pp.0, 2017, https://doi.org/10.1590/1519-6984.169333
  3. Development of a safe antiparasitic against scuticociliates (Miamiensis avidus) in olive flounders: new approach to reduce the toxicity of mebendazole by material remediation technology using full-overlapped gravitational field energy pp.1432-1955, 2018, https://doi.org/10.1007/s00436-018-6010-8