DOI QR코드

DOI QR Code

회전속도에 따른 동역학적 변화를 고려한 반경방향 능동 자기베어링 시스템의 제어기 설계 및 검증

Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds

  • 정진홍 (충남대학교 메카트로닉스공학과) ;
  • 유승열 (한국해양과학기술원 해양시스템연구부) ;
  • 노명규 (충남대학교 메카트로닉스공학과)
  • Jeong, Jin Hong (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Yoo, Seong Yeol (Maritime & Ocean Engineering Research Institute, Korea Institute of Ocean Science & Technology) ;
  • Noh, Myounggyu (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.)
  • 투고 : 2013.08.10
  • 심사 : 2014.06.23
  • 발행 : 2014.09.01

초록

회전체의 자이로스코픽 모멘트가 크거나 회전속도가 고속인 경우 회전속도에 따라 회전체의 동역학적 특성이 변화하는 정도가 커지게 되며, 자기베어링을 이용하여 회전축을 지지하는 경우 자기베어링의 제어기는 회전속도의 영향을 고려하여야 한다. 각 축의 부상력이 해당 축의 센서 출력에 의해서만 결정되는 독립축 제어기는 회전속도에 따른 변화에 대응하기 어려운 구조이나, 혼합축 제어기는 센서출력을 변환하여 진동 모드와 일치하도록 하고 각각의 진동 모드에 대해 독립적으로 제어기가 작동하는 구조로서, 진동 모드에 직접적으로 대응할 수 있는 장점이 있다. 본 논문에서는 회전체의 유연 모드를 포함하는 자기베어링 시스템의 수학적 모델을 기반으로 혼합축 제어기를 설계하고 제어기의 성능을 ISO 민감도 기준 및 불평형질량 응답 측면에서 평가하였다. 제어기 성능 평가 시 회전속도에 따른 시스템의 동특성 변화를 고려하여, 운전 속도 범위에서 성능 지표를 만족함을 확인하였다.

키워드

능동 자기베어링;혼합축 제어;독립축 제어;제어기 설계

과제정보

연구 과제 주관 기관 : 충남대학교

참고문헌

  1. Cloud, C., Li, G., Maslen, E. and Barret, L., 2005, "Practical Applications of Singular Value Decomposition in Rotordynamics," Australian J. Mech. Eng., Vol. 2, pp. 21-32. https://doi.org/10.1080/14484846.2005.11464477
  2. Takahashi, N., Fujiwara, H., Matsushita, O., Ito, M. and Fukushima, Y., 2007, "An Evaluation of Stability Indices Using Sensitivity Functions for Active Magnetic Bearing Supported High-Speed Rotor," J. Vib. Acoust., Vol. 129, pp. 230-238. https://doi.org/10.1115/1.2424979
  3. Ito, M., Fujiwara, H., Takahashi, N. and Matsushita, M., 2005, "Evaluation of Stability Margin of Active Magnetic Bearing Control System Combined with Several Filters," Proc. 9th Int. Symp. Mag. Brg., Lexington KY, U.S.A.
  4. ISO Standard 14839-3, Mechanical Vibration - Vibration of Rotating Machinery Equipped with Active Magnetic Bearing: Part 3 - Evaluation of Stability Margin, 2006.
  5. Nelson, H. and McVaugh, J., 1976, "The Dynamics of Rotor-Bearing Systems Using Finite Elements," ASME J. Eng. Ind., Vol. 98, pp. 593-600. https://doi.org/10.1115/1.3438942
  6. Childs, D., 1993, Turbomachinery Rotordynamics, New York, John Wiley & Sons.
  7. Yoo, S. and Noh, M., 2013, "Comparative Study of Performance of Switching Control and Synchronous Notch Filter Control for Active Magnetic Bearings," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 4, pp. 511-519. https://doi.org/10.3795/KSME-A.2013.37.4.511
  8. Maslen, E. H. and Meeker, D. C., 1995, "Fault Tolerance of Magnetic Bearings by Generalized Bias Current Linearization," IEEE Trans. Magn., Vol. 31, pp. 2304-2314. https://doi.org/10.1109/20.376229
  9. Yoo, S., Lee, W., Bae, Y. and Noh, M, 2011, "Optimal Notch Filter for Active Magnetic Bearing Controllers," IEEE/ASME Int. Conf. Adv. Intell. Mechatr. (AIM2011), pp. 707-711.
  10. Schweitzer, G. and Maslen, E. H., eds., 2009, Magnetic Bearings, Springer, New York.
  11. ISO Standard 1940, Mechanical Vibration - Balancing Quality Requirements of Rigid Rotors, 1986.