주파수응답에 대한 투영기반 모델차수축소법의 비교

Comparison of Projection-Based Model Order Reduction for Frequency Responses

  • 원보름 (한국해양과학기술원 연안개발.에너지연구부) ;
  • 한정삼 (안동대학교 기계설계공학과)
  • Won, Bo Reum (Coastal Development and Ocean Energy Research Division, KIOST) ;
  • Han, Jeong Sam (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.)
  • 투고 : 2014.02.24
  • 심사 : 2014.07.25
  • 발행 : 2014.09.01


본 논문에서는 대표적 투영기반 모델차수축소법인 크리로프 부공간 모델차수축소법(KSM)과 모드중첩법(MTM)을 고려하여 주파수응답해석에 대한 수치적 정확도와 효율성을 비교하였다. 두 모델차수축소법의 수치 정확도 비교를 위하여 주파수응답해석 결과, 축소차수 및 관심주파수에 따른 상대오차를 고려하였으며 이후에 오차수렴지표를 통한 자동적인 축소차수의 결정이 가능 여부를 확인하였다. 효율성 비교를 위해서는 각 축소모델의 주파수응답 해석시간 및 축소차수에 따른 변환행렬 생성시간을 비교하였다. 자동차 현가장치에 대한 유한요소모델을 적용예제로 선정하여 수치 비교를 수행하였다.


연구 과제 주관 기관 : 안동대학교


  1. Han, J. S., 2012, "Efficient Frequency Response and Its Direct Sensitivity Analysis for Large-size Finite Element Models using Krylov Subspace-based Model order reduction," Journal of Mechanical Science and Technology, Vol. 26, No. 4, pp. 1115-1126.
  2. Han, J. S. and Ko, J. H., 2009, "Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 9, pp. 878-885.
  3. Han, J. S., 2007, "Eigenvalue and Frequency Response Analyses of a Hard Disk Drive Actuator Using Reduced Finite Element Models," Trans. Korean Soc. Mech. Eng. A, Vol. 31, No. 5, pp. 541-549.
  4. Li, L., Hu, Y. J. and Wang, X. L., 2014, "Eliminating the Modal Truncation Problem Encountered in Frequency Responses of Viscoelastic Systems," Journal of Sound and Vibration, Vol. 333, pp. 1182-1192.
  5. Antoulas, A. C, 2006, "Approximation of Large-scale Dynamical Systems," Society for Industrial and Applied Mathematics, Vol. 6, pp. 376-377.
  6. Projection Based MOR, 2013, Wikipedia,
  7. Freund, R. W., 2000, "Krylov-Subspace Methods for Reduced-Order Modeling in Circuit Simulation," Journal of Computational and Applied Mathematics, Vol. 123, pp. 395-421.
  8. Han, J. S., 2013, "Calculation of Design Sensitivity for Large-size Transient Dynamic Problems using Krylov Subspace-based Model Order Reduction," Journal of Mechanical Science and Technology, Vol. 27, No. 9, pp. 2789-2800.
  9. Yang, J. Y. and Che, C. Y., 2004, "Extraction of Heat-transfer Macromodels for MEMS Devices," Journal of Micromechanics and Microengineering, Vol. 14, pp. 587-596.
  10. Han, J. S., 2011, "Efficient Modal Analysis of Prestressed Structures via Model Order Reduction," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 10, pp. 1211-1222.
  11. Rudnyi, E. and Korvink, J., 2006, "Model Order Reduction for Large Scale Engineering Models Developed in ANSYS," Lecture Notes in Computer Science, Vol. 3732, pp. 349-356.
  12. Zhang, X. P. and Kang, Z., 2013, "Topology Optimization of Damping Layers for Minimizing Sound Radiation of Shell Structures," Journal of Sound and Vibration, Vol. 333, pp. 2500-2519.
  13. Gugercin, S. and Antoulas, A. C, 2004, "A Survey of Model Reduction by Balanced Truncation and Some New Results," Int. J. Control, Vol. 77, No. 8, 748-766.
  14. Azam, S. E. and Mariani, S., 2013, "Investigation of Computational and Accuracy Issues in POD-Based Reduced Order Modeling of Dynamic Structural Systems," Engineering Structures, Vol. 54, 150-167.
  15. Qu, Z., 2004, "Model Order Reduction Techniques with Applications in Finite Element Analysis," Springer.
  16. ANSYS, 2012, ANSYS Mechanical APDL Theory Reference 14.5, SAS IP, Inc.