DOI QR코드

DOI QR Code

The Global Warming Hiatus Simulated in HadGEM2-AO Based on RCP8.5

HadGEM2-AO RCP8.5 모의에서 나타난 지구온난화 멈춤

  • Wie, Jieun (Division of Science Education/Institute of Science Education, Chonbuk National University) ;
  • Moon, Byung-Kwon (Division of Science Education/Institute of Science Education, Chonbuk National University) ;
  • Kim, Ki-Young (4D Solution Co., LTD.) ;
  • Lee, Johan (National Institute of Meteorological Research)
  • 위지은 (전북대학교 과학교육학부/융합과학연구소) ;
  • 문병권 (전북대학교 과학교육학부/융합과학연구소) ;
  • 김기영 ((주)포디솔루션) ;
  • 이조한 (국립기상연구소)
  • Received : 2014.07.08
  • Accepted : 2014.08.14
  • Published : 2014.08.31

Abstract

Despite the greenhouse gases like carbon dioxide have steadily increased in atmosphere, the overall trend of the global average surface air temperature has stalled during the last decade (2002-present). This phenomenon is often called hiatus or warming pause, which is challenging the prevailing view that anthropogenic forcing causes warming environment. Our study characterized the hiatus by analyzing the HadGEM2-AO (95 yrs) simulation data based on RCP8.5 scenario. The PC2 time series from the EOF of the zonal mean vertical ocean temperature has been defined as the index that represents the warming pause. The relationship between the hiatus, ENSO and the changes in climate system are identified by utilizing the newly defined PC2. Since the La Nina index (defined as the negative of NINO3 index) leads PC2 by about 11 months, it may be possible that the La Nina causes the warming to be interrupted. We also show that the cooling of the climate system closed tied to the heat penetration into the deep ocean, indicating the weakening the warming rate is due to the oceanic heat uptake. Finally, the global warming hiatus is characterized by the anomalous warming in Arctic region as well as the intensification of the trade wind in the equatorial Pacific.

Keywords

warming hiatus;HadGEM2-AO;La $Ni{\tilde{n}}a$;oceanic heat uptake

Acknowledgement

Grant : 기후변화 예측기술 지원 및 활용연구

References

  1. Rahmstorf, S., 2002, Ocean circulation and climate during the past 120,000 years. Nature, 419, 207-214. https://doi.org/10.1038/nature01090
  2. Nakicenovic, N. and Swart, R., 2000, Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 612 p.
  3. Peterson, T.C., Hoerling, M.P., Stott, P.A., and Herring, S., 2013, Explaining extreme events of 2012 from a climate perspective. Bulletin of the American Meteorological Society, 94, S1-S74, doi:10.1175/Bams-D-13-00085.1. https://doi.org/10.1175/BAMS-D-13-00085.1
  4. Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V., 1999, Interdecadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15, 319-324. https://doi.org/10.1007/s003820050284
  5. Trenberth, K.E., 2009, An imperative for climate change planning: Tracking Earth's global energy. Current Opinion in Environmental Sustainability, 1, 19-27. https://doi.org/10.1016/j.cosust.2009.06.001
  6. Rigor, I.G., Colony, R.L., and Martin, S., 2000, Variations in surface air temperature observations in the Arctic, 1979-97. Journal of Climate, 13, 896-914. https://doi.org/10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2
  7. Solomon, S., Rosenlof, K.H., Portmann, R.W., Daniel, J.S., Davis, S.M., Sanford, T.J., and Plattner, G.-K., 2010, Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219-1223, doi:10.1126/science.1182488. https://doi.org/10.1126/science.1182488
  8. Solomon, S., Daniel, J.S., Neely, R.R., Vernier, J.P., Dutton, E.G., and Thomason, L.W., 2011, The persistently variable 'background' stratospheric aerosol layer and global climate change. Science, 333, 866-870. https://doi.org/10.1126/science.1206027
  9. Trenberth, K.E. and Fasullo, J.T., 2013, An apparent hiatus in global warming? Earth's Future, 1, 19-32. https://doi.org/10.1002/2013EF000165
  10. Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., and Rose, S.K., 2011, The representative concentration pathways: An overview. Climatic Change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z
  11. Watanabe, M., Kamae, Y., Yoshimori, M., Oka, A., Sato, M., Ishii, M., Mochizuki, T., and Kimoto, M., 2013, Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophysical Research Letters, 40, 3175-2179. https://doi.org/10.1002/grl.50541
  12. Hannachi, A., Jolliffe, I.T., and Stephenson, D.B., 2007, Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27, 1119-1152. https://doi.org/10.1002/joc.1499
  13. Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K., 2011, Earth's energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13421-13449. https://doi.org/10.5194/acp-11-13421-2011
  14. Kaufmann, R.K., Kauppib, H., Mann, M.L., and Stock, J.H., 2011, Reconciling anthropogenic climate change with observed temperature 1998-2008. Proceedings of the National Academy of Sciences of the United States of America, 108, 11790-11793. https://doi.org/10.1073/pnas.1102467108
  15. Held, I.M., 2013, The cause of the pause. Nature, 501, 318-319. https://doi.org/10.1038/501318a
  16. IPCC, 2013, Summary for policymakers. in climate change 2013: The physical science basis. Cambridge University Press, Cambridge, UK, 27 p.
  17. Johannessen, O.M., Bengtsson, L., Miles, M.W., Kuzmina, S.I., Semenov, V.A., Alekseev, G.V., Nagurnyi, A.P., Zakharov, V.F., Bobylev, L.P., Pettersson, L.H., Hasselmann, K., and Cattle, H.P., 2004, Arctic climate change: Observed and modeled temperature and sea-ice variability. Tellus, 56A, 328-341.
  18. Kosaka, Y. and Xie, S.-P., 2013, Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403-407, doi:10.1038/nature12534. https://doi.org/10.1038/nature12534
  19. Lean, J.L. and Rind, D.H., 2009, How will Earth's surface temperature change in future decades? Geophysical Research Letters, 36, L15708, doi:10.1029/2009GL038932. https://doi.org/10.1029/2009GL038932
  20. Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C., 1997, A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069-1079. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
  21. Chang, E.-C. and Hong, S.-Y., 2011, Projected climate change scenario over East Asia by a regional spectral model. Journal of Korean Earth Science Society, 32, 770-783. https://doi.org/10.5467/JKESS.2011.32.7.770
  22. Martin, G.M., Bellouin, N., Collins, W.J., Culverwell, I.D., Halloran, P.R., Hardiman, S.C., Hinton, J., Jones, C.D., McDonald, R.E., McLaren, A.J., O'Connor, F.M., Roberts, M.J., Rodriguez, J.M., Woodward, S., Best, M.J., Brooks, M.E., Brown, A.R., Butchart, N., Dearden, C., Derbyshire, S.H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J.M., Falloon, P.D., Gedney, N., Gray, L.J., Hewitt, H.T., Hobson, M., Huddleston, M.R., Hughes, J., Ineson, S., Ingram, W.J., James, P.M., Johns, T.C., Johnson, C.E., Jones, A., Jones, C.P., Joshi, M.M., Keen, A.B., Liddicoat, S., Lock, A.P., Maidens, A.V., Manners, J.C., Milton, S.F., Rae1, J.G.L., Ridley, J.K., Sellar, A., Senior, C.A., Totterdell, I.J., Verhoef, A., Vidale, P.L., and Wiltshire, A., 2011, The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 4, 723-757. https://doi.org/10.5194/gmd-4-723-2011
  23. Meehl, G.A., Arblaster, J.M., Fasullo, J.T., Hu, A., and Trenberth, K.E., 2011, Model-based evidence of deepocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1, 360-364, doi:10.1038/nclimate1229. https://doi.org/10.1038/nclimate1229
  24. Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R.J., and Taylor, K.E., 2007, The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383-1394. https://doi.org/10.1175/BAMS-88-9-1383
  25. Chang, S.-K., Yoon, H.I., and Chung, H., 1998, Global warming and recent retreat of an ice cliff on King George Island, South Shetland Islands, West Antarctica. Journal of Korean Earth Science Society, 19, 101-106.
  26. Choi, Y.-S., 2011, How sensitive is the Earth climate to a runaway carbon dioxide? Journal of Korean Earth Science Society, 32, 239-247. https://doi.org/10.5467/JKESS.2011.32.2.239
  27. Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.M., and Morgan, V.I., 1996, Natural and anthropogenic changes in atmospheric $CO_2$ over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research-Atmosphere, 101, 4115-4128. https://doi.org/10.1029/95JD03410
  28. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.,D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S., 2011, Development and evaluation of an Earth-system model HadGEM2. Geoscientific Model Development Discussions, 4, 997-1062. https://doi.org/10.5194/gmdd-4-997-2011
  29. Easterling, D.R. and Wehner, M.F., 2009, Is the climate warming or cooling? Geophysical Research Letters, 36, L08706, doi:10.1029/2009GL037810. https://doi.org/10.1029/2009GL037810
  30. England, M.H., McGregor, S., Spence, P., Meehl, G.A., Timmermann, A., Cai, W., Gupta, A.S., MaPhaden, M.J., Purich, A., and Santoso, A., 2014, Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222-227. https://doi.org/10.1038/nclimate2106
  31. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M., 2013, Evaluation of climate models. in climate change 2013: The physical science basis. Cambridge University Press, Cambridge, UK, 126 p.
  32. Folland, C.K., Renwick, J.A., Salinger, M.J., and Mullan, A.B., 2002, Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophysical Research Letters, 29, 211-214.
  33. Frohlich, C., 2012, Total solar irradiance observations. Surveys in Geophysics, 33, 453-473, doi: 10.1007/s10712-011-9168-5. https://doi.org/10.1007/s10712-011-9168-5
  34. Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C., Kwon, W.-T., Marzin, C., Gan, S.-Y., Kim, M.-J., Cho, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S., and Byun, Y.-H., 2013, Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Science, 49, 603-618, doi:10.1007/s13143-013-0053-7. https://doi.org/10.1007/s13143-013-0053-7
  35. Balmaseda, M.A., Trenberth, K.E., and Kallen, E., 2013, Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, 40, 1-6. https://doi.org/10.1029/2012GL054022
  36. Foster, G. and Rahmstorf, S., 2011, Global temperature evolution 1979-2010. Environmental Research Letters, 6, 044022, doi:10.1088/1748-9326/6/4/044022. https://doi.org/10.1088/1748-9326/6/4/044022

Cited by

  1. Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios vol.25, pp.4, 2015, https://doi.org/10.14191/Atmos.2015.25.4.693
  2. A Mechanism of AMOC Decadal Variability in the HadGEM2-AO vol.36, pp.3, 2015, https://doi.org/10.5467/JKESS.2015.36.3.199