Antioxidant and Anti-inflammatory Activities of Water-soluble Extracts from Different Parts of Kojongsi Persimmon (Diospyros kaki L.)

고종시 감나무 부위별 수용성 추출물의 항산화 및 항염 활성

  • Received : 2014.04.19
  • Accepted : 2014.06.21
  • Published : 2014.08.31


Kojongsi persimmon (Diospyros kaki L.) is the major cultivar of dried persimmon in Korea. The purpose of this study was to investigate the antioxidant and anti-inflammatory activities of water-soluble extracts from the calyx (PCE), peel (PPE) and leaf (PLE) of Kojongsi persimmon. PCE showed the highest total phenolic and flavonoid contents. In addition, the antioxidant activities (diphenylpicrylhydrazyl, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), nitric oxide and reducing power) of PCE were higher than those of PPE and PLE. Moreover, PCE, PPE and PLE significantly suppressed the production of inflammatory mediators (nitric oxide and $prostaglandinE_2$) and pro-inflammatory cytokines (tumor necrosis factor-${\alpha}$ and interluekin-$1{\beta}$) by lipopolysaccharide-stimulated RAW 264.7 cells in a dose-dependent manner. PCE showed the highest anti-inflammatory activity. Thus, these results suggest that the calyx of Kojongsi persimmon may be highly valuable as a natural product owing to its high-quality functional components as well as its-antioxidant, ant-iinflammatory activities.


Kojongsi persimmon;antioxidant;anti-inflammation


Supported by : 산업통상자원부


  1. Chung JY, Kim KH, Shin DJ, Son GM. Effects of sweet persimmon powder on the characteristics of bread. J. Korean Soc. Food Sci. Nutr. 31: 738-742 (2002)
  2. Chen XN, Fan JF, Yue X, Wu XR, Li LT. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J. Food. Sci. 73: C24-28 (2008)
  3. Lee U, Cho DH, Lee MH, Song IK, Hwang SI, Lee SH, Choi KS, Heo MS, Kim SY, Chung KM. Cultivation of fruit trees - Walnut and Astringent persimmon. Korea For. Res. Inst. 89-109 (2009)
  4. Jeong SI, Cho JK, Mok JY, Kim SJ, Park JM, Jeon IH, Kim HS, Jang SI. Antioxidant activity of Persimmon Leaves during Growth. Kor. J. Pharmacogn. 41: 255-263 (2010)
  5. Moon KD, Kim JK, Sohn TH. Quality changes in dried persimmons processed by different pretreatment and drying method. Kor. J. Dietary Culture 8: 331-335 (1993)
  6. Seo JH, Jeong YJ, Kim KS. Physiological characteristics of tannins isolated from astringent persimmon fruit. Korean J. Food Sci. Technol. 32: 212-217 (2000)
  7. Kawakami K, Aketa S, Nakanami M, Iizuka S, Hirayama M. Major water-soluble polyphenols, proanthocyanidins, in leaves of persimmon (Diospyros kaki) and their alpha-amylase inhibitory activity. Biosci. Biotechnol. Biochem. 74: 1380-1385 (2010)
  8. Fukai S, Tanimoto S, Maeda A, Fukuda H, Okada Y, Nomura M. Pharmacological activity of compounds extracted from persimmon peel (Diospyros kaki THUNB.). J. Oleo. Sci. 58: 213-219 (2009)
  9. Tanaka T. Chemical studies on plant polyphenols and formation of black tea polyphenols. Yakugaku Zasshi. 128: 1119-1131 (2008)
  10. Kim Y, Lee YS, Hahn JH, Choe J, Kwon HJ, Ro JY, Jeoung D. Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol. Immunol. 45: 2537-2547 (2008)
  11. An BJ, Kwak JH, Park JM, Lee JY, Park TS, Lee JT, Son JH, Jo C, Byun MW. Inhibition of enzyme activities and the antiwrinkle effect of polyphenol isolated from the persimmon leaf (Diospyros kaki folium) on human skin. Dermatol. Surg. 31: 848-854 (2005)
  12. Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy. 4: 517-519 (2005)
  13. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126: 2565-2575 (2006)
  14. Sivaranjani N, Rao SV, Rajeev G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J. Clin. Diagn. Res. 7: 2683-2685 (2013)
  15. Omata N, Tsukahara H, Ito S, Ohshima Y, Yasutomi M, Yamada A, Jiang M, Hiraoka M, Nambu M, Deguchi Y, Mayumi M. Increased oxidative stress in childhood atopic dermatitis. Life Sci. 69: 223-228 (2001)
  16. Cho JK, Park JM, Jeon IH, Kim HS, Jang SI. Effect of persimmon leaf extract on ultraviolet B-induced inflammation in HaCat keratinocytes and mice. J. Korean. Soc. Appl. Bol. Chem. 54: 583-590 (2011)
  17. Cho JK, Jeon IH, Park JM, , Kim HS, Jang SI. Inhibitory effect of persimmon leaf extract on development of atopic dermatitislike skin lesions. J. Korean. Soc. Appl. Bol. Chem. 54: 653-657 (2011)
  18. Jo YH, Park JW, Lee JM, Ahn GH, Park HR, Lee SC. Antioxidant and anticancer activities of methanol extracts prepared from different parts of jangseong daebong persimmon (Diospyros kaki cv. Hachiya). J. Korean Soc. Food Sci. Nutr. 29: 500-505 (2010)
  19. Re R, Pelligrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237 (1999)
  20. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299: 152-178 (1999)
  21. Moreno DA, Carvajal M, Lopez-Berenguer C, Garcoa-Viguera C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 41: 1508-1522 (2006)
  22. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 181: 1199-1200 (1958)
  23. Gray JI, Dugan JRL. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40: 981-985 (1975)
  24. Oyaizu M. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986)
  25. Jang IC, Oh WG, Ahn GH, Lee JH, Lee SC. Antioxidant activity of 4 cultivars of persimmon fruit. Food Sci. Biotechnol. 20: 71-77 (2011)
  26. Ito N, Fukushima S, Haqlwara A, Shibata M, Ogiso T. Carcinogenicity of butylated hydroxyanisole in F344 Rats. J. Natl. Cancer Inst. 70: 343-352 (1983)
  27. Chan KM, Decker EA, Means WJ. Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle. J. Food. Sci. 58: 1-4 (1993)
  28. Branen AL. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Amer. Oil Chem. Soc. 52: 59-63 (1975)
  29. Lee YS, Joo EY, Kim NW. Antioxidant activity of extracts from the Lespedeza bicolor. Korean J. Food Preserv. 12: 75-79 (2005)
  30. Jung GT, Ju IO, Ryu J, Chio JS, Choi YG. Chemical components and physiological activites of thinned apple, pear and peach. Korean J. Food Preserv. 9: 391-395 (2002)
  31. Stella SP, Ferrarezi AC, dos Santos KO, Monteiro M. Antioxidant activity of commercial ready-to-drink orange juice and nectar. J. Food Sci. 76: 392-397 (2011)
  32. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer. 121: 2357-2363 (2007)