DOI QR코드

DOI QR Code

Inhibitory Effect of Galangin from Alpinia officinarum on Lipopolysaccharide-induced Nitric Oxide Synthesis in RAW 264.7 macrophages

고량강으로부터 분리된 galangin의 RAW 264.7 세포주에서 LPS로 유도된 nitric oxide 생성 저해활성

  • Received : 2013.05.26
  • Accepted : 2014.06.04
  • Published : 2014.08.31

Abstract

In a screen for plant-derived inhibitors of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells, a flavonol isolated from the chloroform extract of Alpinia officinarum was isolated. The structure of the flavonol was found to be 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG) by using spectroscopy. GLG exhibited an inhibitory effect ($IC_{50}$ value: $26.8{\mu}M$) on NO production in LPS-stimulated RAW 264.7 murine macrophage cells. Moreover, GLG suppressed expressions of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner.

Keywords

Alpinia officinarum;Zingiberaceae;nitric oxide;inducible nitric oxide synthase;flavonol

References

  1. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur. Heart J. 33: 829-837 (2012) https://doi.org/10.1093/eurheartj/ehr304
  2. Garthwaite J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol. Cell Biochem. 334: 221-232 (2010) https://doi.org/10.1007/s11010-009-0318-8
  3. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279: 2121-2126 (1998) https://doi.org/10.1126/science.279.5359.2121
  4. Ly TN, Yamauchi R, Kato K. Volatile Components of the Essential Oils in Galanga (Alpinia officinarum Hance) from Vietnam. Food Sci. Technol. Res. 7: 303-306 (2001) https://doi.org/10.3136/fstr.7.303
  5. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 357: 593-615 (2001) https://doi.org/10.1042/0264-6021:3570593
  6. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc. Res. 43: 521-531 (1999) https://doi.org/10.1016/S0008-6363(99)00115-7
  7. De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis. Expert Rev. Respir. Med. 3: 511-521 (2009) https://doi.org/10.1586/ers.09.39
  8. Shin D, Kinoshita K, Koyama K, Takahashi K. Antiemetic principles of Alpinia officinarum. J. Nat. Prod. 65: 1315-1318 (2002) https://doi.org/10.1021/np020099i
  9. Yadav PN, Liu Z, Rafi MM.. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. J. Pharmacol. Exp. Ther. 30: 925-931 (2003)
  10. Ly TN, Shimoyamada M, Kato K, Yamauchi R. Isolation and characterization of some anti-oxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J. Agr. Food Chem. 51: 4924-4929 (2003) https://doi.org/10.1021/jf034295m
  11. Lee KH, Rhee KH. Anti-tumor activity of the extract of Alpinia officinarum using hollow fiber assay. Korean J. Food Nutr. 24: 496-500 (2011) https://doi.org/10.9799/ksfan.2011.24.4.496
  12. Kim HJ, Yoo MY, Kim HK, Lee BH, Oh KS, Seo HW, Yon GH, Gendaram O, Kwon DY, Kim YS, Ryu SY. Vasorelaxation effect of the falvonoids from the rhizome extract of Alpinia officinarum on isolated rat thoracic aorta. Kor. J. Pharmacogn. 37: 56-59 (2006)
  13. Lee HJ, Kim JS, Ryu JH. Suppression of inducible nitric oxide synthase expression by diarylheptanoids from Alpinia officinarum. Planta Med. 72: 68-71 (2006) https://doi.org/10.1055/s-2005-873176
  14. Kim HH, Bae Y, Kim SH. Galangin attenuates mast cell-mediated allergic inflammation. Food Chem. Toxicol. 57: 209-216 (2013) https://doi.org/10.1016/j.fct.2013.03.015
  15. Wawer I, Zielinska A. $^{13}C$ CP/MAS NMR studies of flavonoids. Magn. Reson. Chem. 39: 374-380 (2001) https://doi.org/10.1002/mrc.871
  16. Su L, Chen X, Wu J, Lin B, Zhang H, Lan L, Luo H. Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem. Toxicol. 62: 810-816 (2013) https://doi.org/10.1016/j.fct.2013.10.019
  17. Morello S, Vellecco V, Alfieri A, Mascolo N, Cicala C. Vasorelaxant effect of the flavonoid galangin on isolated rat thoracic aorta. Life Sci. 78: 825-830 (2006) https://doi.org/10.1016/j.lfs.2005.05.072
  18. Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm. Biol. 51: 607-613 (2013) https://doi.org/10.3109/13880209.2012.757327
  19. Lotito SB, Frei B. Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J. Biol. Chem. 281: 37102-37110 (2006) https://doi.org/10.1074/jbc.M606804200
  20. Suzuki R, Tanaka T, Yamamoto M, Sakagami H, Tomomura M, Tomomura A, Satoh K, Shirataki Y. In search of new biological activities of isolates from Odontoglossum Harvengtense 'Tutu'. In Vivo. 26: 993-999 (2012)
  21. Matsuda H, Ando S, Kato T, Morikawa T, Yoshikawa M. Inhibitors from the rhizomes of Alpinia officinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorgan. Med. Chem. 14: 138-142 (2006) https://doi.org/10.1016/j.bmc.2005.08.003
  22. Kim JS, Lee HJ, Lee MH, Kim J, Jin C, Ryu JH. Luteolin inhibits LPS-stimulated inducible nitric oxide synthase expression in BV-2 microglial cells. Planta Med. 72: 65-68 (2006) https://doi.org/10.1055/s-2005-873145
  23. Lee HJ, Li H, Chang HR, Jung H, Lee DY. Ryu JH. (-)-Nyasol, isolated from Anemarrhena asphodeloides suppresses neuroinflammatory response through the inhibition of $I-{\kappa}B{\alpha}$ degradation in LPS-stimulated BV-2 microglial cells. J. Enzym Inhib. Med. Chem. 28: 954-959 (2013) https://doi.org/10.3109/14756366.2012.697057
  24. Ryu JH, Ahn H, Lee HJ. Inhibition of nitric oxide production on LPS-activated macrophages by kazinol B from Broussonetia kazinoki. Fitoterapia 74: 350-354 (2003) https://doi.org/10.1016/S0367-326X(03)00062-5
  25. Endale M, Park SC, Kim S, Kim SH, Yang Y, Cho JY, Rhee MH. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-${\kappa}B$-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 218: 1452-1467 (2013) https://doi.org/10.1016/j.imbio.2013.04.019
  26. Kim HK, Park HR, Lee JS, Chung TS, Chung HY, Chung J. Down-regulation of iNOS and TNF-alpha expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues. Biogerontology 8: 399-408 (2007) https://doi.org/10.1007/s10522-007-9083-9
  27. Kim JS, Kim JY, Lee HJ, Lim HJ, Lee DY, Kim DH, Ryu JH. Suppression of inducible nitric oxide synthase expression by furfuran lignans from flower buds of Magnolia fargesii in BV-2 microglial cells. Phytother. Res. 24: 748-753 (2010)
  28. Kim TH, Li H, Wu Q, Lee HJ, Ryu JH. A new labdane diterpenoid with anti-inflammatory activity from Thuja orientalis. J. Ethnopharmacol. 146: 760-767 (2013) https://doi.org/10.1016/j.jep.2013.02.001
  29. Li H, Kim JY, Hyeon J, Lee HJ, Ryu JH. In vitro antiinflammatory activity of a new sesquiterpene lactone isolated from Siegesbeckia glabrescens. Phytother. Res. 25: 1323-1327 (2011)
  30. Zhao F, Gao Z, Jiao W, Chen L, Chen L, Yao X. In vitro antiinflammatory effects of beta-carboline alkaloids, isolated from Picrasma quassioides, through inhibition of the iNOS pathway. Planta Med. 78: 1906-1911 (2012) https://doi.org/10.1055/s-0032-1327883
  31. Luo Y, Liu M, Yao X, Xia Y, Dai Y, Chou G, Wang Z. Total alkaloids from Radix Linderae prevent the production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells by suppressing NF-kappaB and MAPKs activation. Cytokine 46: 104-110 (2009) https://doi.org/10.1016/j.cyto.2008.12.017

Acknowledgement

Supported by : 세명대학교