DOI QR코드

DOI QR Code

FUNCTIONS ON κ-NET CONVERGENCE STRUCTURES

Cho, Myung Hyun;Kim, Junhui;Moon, Mi Ae

  • Received : 2014.08.08
  • Accepted : 2014.08.26
  • Published : 2014.09.25

Abstract

We investigate various properties of ${\kappa}$-net convergence structures and define a ${\kappa}$-net-based continuous function on ${\kappa}$-net $\mathcal{L}^+$-convergence structures, and study relationships between continuity and ${\kappa}$-net-based continuity on ${\kappa}$-net $\mathcal{L}^+$-convergence structures. We also provide some characterizations of ${\kappa}$-net-based continuity.

Keywords

${\kappa}$-net;${\kappa}$-Fr$\acute{e}$chet;${\kappa}$-net space;sequentially continuous;${\kappa}$-net-based continuous

References

  1. R. E. Hodel, A Theory of Convergence and Cluster Points Based on ${\kappa}$-nets, Topology Proc. 35 (2010), 291-330.
  2. A. V. Arkhangel'skii and L. S. Pontryagin, General Topology I, Springer-Verlag, 1990.
  3. R. M. Dudley, On sequential convergence, Trans. Amer. Math. Soc. 112 (1964), 483-507. https://doi.org/10.1090/S0002-9947-1964-0175081-6
  4. R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
  5. R. Fric, History of Sequential Convergence Spaces, Handbook of the History of General Topology, Vol. 1, 343-355, Kluwer Acad. Publ., Dordrecht, 1997.
  6. H. Herrlich and G. Strecker, Categorical Topology its origins, as exemplified by the unfolding of the theory of topological reflections and coreflections before 1971, Handbook of the history of general topology, Vol. 1, 255-341, Kluwer Acad. Publ., Dordrecht, 1997.
  7. J. Kisynski, Convergence du Type L, Colloq. Math. 7 (1960), 205-211. https://doi.org/10.4064/cm-7-2-205-211

Acknowledgement

Supported by : Wonkwang University