DOI QR코드

DOI QR Code

Magneto-transport Properties of La0.7Sr0.3Mn1+dO3-Manganese Oxide Composites Prepared by Liquid Phase Sintering

  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • You, Jae-Hyoung (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Choi, Soon-Mi (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Yoo, Sang-Im (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University)
  • Received : 2014.06.23
  • Accepted : 2014.08.19
  • Published : 2014.09.30

Abstract

Significantly enhanced low-field magnetoresistance (LFMR) and maximum dMR/dH {$(dMR/dH)_{max}$} values were successfully achieved from $La_{0.7}Sr_{0.3}MnO_3$(LSMO)-manganese oxide composite samples prepared by liquid phase sintering, compared with those of the same composites prepared by solid state reaction. For this study, pure LSMO and LSMO-manganese oxide composites with various nominal compositions of (1-x)LSMO-$xMn_2O_3$ (x = 0.1, 0.2, 0.3, 0.4, and 0.8) were sintered at $1450^{\circ}C$, above the eutectic temperature of $1430^{\circ}C$, for 1 h in air. The highest LFMR value of 1.28% with the highest $(dMR/dH)_{max}$ value of 21.1% $kOe^{-1}$ was obtained from the composite sample with x = 0.3 at 290 K in 500 Oe. This enhancement of LFMR and $(dMR/dH)_{max}$ values is ascribed to efficient suppression of magnetic disorder at the LSMO grain boundary, by forming a characteristic LSMO-manganese eutectic structure.

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Ll. Balcells, J. Fontcuberta, B. Martinez, and X. Obradors, J. Phys.: Condens. Matter. 10, 1883 (1997).
  2. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993). https://doi.org/10.1103/PhysRevLett.71.2331
  3. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994). https://doi.org/10.1126/science.264.5157.413
  4. H. Y. Hwang, S. W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996). https://doi.org/10.1103/PhysRevLett.77.2041
  5. A. Gaur and G. D. Varma, J. Alloys Compd. 453, 423 (2008). https://doi.org/10.1016/j.jallcom.2006.11.132
  6. D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild, and P. R. Duncombe, Appl. Phys. Lett. 75, 995 (1999). https://doi.org/10.1063/1.124577
  7. O. A. Shlyakhtin, K. H. Shin, and Y.-J. Oh, J. Appl. Phys. 91, 7403 (2002). https://doi.org/10.1063/1.1446126
  8. A. Gaur and G. D. Varma, Cryst. Res. Technol. 42, 164 (2007). https://doi.org/10.1002/crat.200610790
  9. L1. Balcells, A. E. Carrillo, B. Martínez, and J. Fontcuberta, Appl. Phys. Lett. 74, 4014 (1999). https://doi.org/10.1063/1.123245
  10. S. Karmakar, S. Taran, B. K. Chaudhuri, H. Sakata, C. P. Sun, C. L. Huang, and H. D. Yang, J. Phys. D: Appl. Phys. 38, 3757 (2005). https://doi.org/10.1088/0022-3727/38/20/001
  11. A. Gaur and G. D. Varma, Solid State Commun. 139, 310 (2006). https://doi.org/10.1016/j.ssc.2006.05.018
  12. V. Moshinyaga, B. Damaschke, O. Shapoval, A. Belenchuk, J. Faupel, O. I. Lebedv, J. Verbeeck, G. van Tendeloo, M. Mucksch, V. Tsurkan, R. Tidecks, and K. Samwer, Nat. Mater. 2, 247 (2003). https://doi.org/10.1038/nmat859
  13. C.-H. Yan, Z.-G. Xu, T. Zhu, Z.-M. Wang, F.-X. Cheng, T.-H. Huang, and C.-S. Liao, J. Appl. Phys. 87, 5588 (2000). https://doi.org/10.1063/1.372459
  14. C. Xionga, H. Hu, Y. Xiong, Z. Zhang, H. Pi, X. Wu, L. Li, F. Wei, and C. Zheng, J. Alloys Compd. 479, 357 (2009). https://doi.org/10.1016/j.jallcom.2008.12.087
  15. P. T. Phonga, N. V. Khiem, N. V. Dai, D. H. Manh, L. V. Hong, and N. X. Phuc, J. Alloys Compd. 484, 12 (2009). https://doi.org/10.1016/j.jallcom.2009.04.094
  16. Y.-H. Huang, X. Chen, Z.-M. Wang, C.-S. Liao, and C.- H. Yan, J. Appl. Phys. 91, 7733 (2002). https://doi.org/10.1063/1.1448302
  17. J. Kumar, R. K. Singh, H. K. Singh, P. K. Siwach, R. Singh, and O. N. Srivastava, J. Alloys Compd. 455, 289 (2008). https://doi.org/10.1016/j.jallcom.2007.01.028
  18. P. Kameli, H. Salamati, and M. Hakimi, J. Alloys Compd. 463, 18 (2008). https://doi.org/10.1016/j.jallcom.2007.09.025
  19. J.-M. Liu, G. L. Yuan, H. Sang, Z. C. Wu, X. Y. Chen, Z. G. Liu, Y. W. Du, Q. Huang, and C. K. Ong, Appl. Phys. Lett. 78, 1110 (2001). https://doi.org/10.1063/1.1350602
  20. C.-H. Yan, F. Luo, Y.-H. Huang, X.-H. Li, Z.-M. Wang, and C.-S. Liao, J. Appl. Phys. 91, 7406 (2002). https://doi.org/10.1063/1.1448301
  21. J. A. M. van Roosmalen, P. van Vlaanderen, and E. H. P. Cordfunke, J. Solid State Chem. 114, 516 (1995). https://doi.org/10.1006/jssc.1995.1078
  22. Y.-M. Kang, H.-J. Kim, and S.-I. Yoo, Appl. Phys. Lett. 95, 052510 (2009). https://doi.org/10.1063/1.3177192
  23. H.-J. Kim and S.-I. Yoo, J. Alloys Compd. 521, 30 (2012). https://doi.org/10.1016/j.jallcom.2011.12.121