DOI QR코드

DOI QR Code

Low Writing Field on Perpendicular Nano-ferromagnetic

  • Wibowo, Nur Aji (Physics Department, Faculty of Science and Mathematics, Satya Wacana Christian University) ;
  • Rondonuwu, Ferdy S. (Physics Department, Faculty of Science and Mathematics, Satya Wacana Christian University) ;
  • Purnama, Budi (Physics Department, Faculty of Mathematics and Natural Science, Sebelas Maret University)
  • Received : 2014.07.03
  • Accepted : 2014.09.03
  • Published : 2014.09.30

Abstract

For heat-assisted magnetic recording, magnetization reversal probabilities of nano-Pt/MnSb multilayer film with perpendicular magnetic anisotropy under thermal pulse activation were investigated numerically by solving the Landau-Lifshift Gilbert Equation. Magnetic parameters of nano-Pt/MnSb multilayer were used with anisotropy energy of $3{\times}10^5$ erg/cc and saturation magnetization of 2100 G, which offer more than 10 y data stability at room temperature. Scheme of driven magnetic field and thermal pulse on writing mechanism was designed closely to real experiment. This study found that the chosen material is potential to be used as a high density magnetic storage that requires low writing field less than two-hundreds Oersted through definite heating and cooling interval. The possibility of writing data with a zero driven magnetic field also became an important result. Further study is recommended on the thickness of media and thermal pulse design as the essential parameters of the reversal magnetization.

References

  1. N. A. Wibowo, and B. Purnama, IACSIT Int. J. Eng. Technol. 3 (2011). Doi: 10.7763/IJET.2011.V3.256. https://doi.org/10.7763/IJET.2011.V3.256
  2. S. H. Lim, and H. J Kim, J. Magn. 6, 109 (2001).
  3. Sabine Alebrand, Matthias Gottwald, Michel Hehn, Daniel Steil, Mirko Cinchetti, Daniel Lacour, Eric E. Fullerton, Martin Aeschlimann, and Stephane Mangin, Appl. Phys. Lett. 101, 162408 (2012). https://doi.org/10.1063/1.4759109
  4. Koji Matsumoto, Akhihiro Inomata, and Shin-ya Hasigawa, Fujitsu Scientific & Technical Journal 42, 158 (2006).
  5. Mark H. Kryder, Edward C. Gage, Terry W. McDaniel, William A. Challener, Robert E. Rottmayer, Ganping Ju, Yiao-Tee Hsia, and M. Fatih Erden, Proceedings of the Institute of Electrical and Electronics Engineers (invited paper) 96, 11 (2008).
  6. S. H. Yoon, and K. M. Krishnan, J. Appl. Phys. 109, 07B534 (2011). https://doi.org/10.1063/1.3563068
  7. Ralph Skomski, J. Appl. Phys. 101, 09B104 (2007). https://doi.org/10.1063/1.2714322
  8. Hiroyuki Katayama, Shinzo Sawamura, Yasushi Ogimoto, Junsaku Nakajima, Kunio Kojima, and Kenji Ohta, J. Magn. Soc. Japan 23, 233 (1999).
  9. Sari Shafidah Binte Shafiee, Moulay Rachid Elidrissi, Hong Tao Wang, Kwaku Eason, Rathna Kumar Radhakrishnan, Kheong Sann Chan, and Yong Liang Guan, J. Appl. Phys. 111, 07B714 (2012). https://doi.org/10.1063/1.3679141
  10. R. H. Victora, IEEE Trans. Magn. 49, 2 (2013). https://doi.org/10.1109/TMAG.2013.2261416
  11. G Vinai, J Moritz, S Bandiera, I L Prejbeanu, and B Dieny, J. Phys. D: Appl. Phys. 46, 322001 (2013). Doi:10.1088/0022-3727/46/32/322001. https://doi.org/10.1088/0022-3727/46/32/322001
  12. B. X. Xu, Z. J. Liu, R. Ji, Y. T. Toh, J. F. Hu, J. M. Li, J. Zhang, K. D. Ye, and C. W. Chia, J. Appl. Phys. 111, 07B701 (2012). https://doi.org/10.1063/1.3671421
  13. U. Kilic, G. Finocchio, T. Hauet, S. H. Florez, G. Aktas, and O. Ozatay, Appl. Phys. Lett. 101, 252407 (2012). https://doi.org/10.1063/1.4772486
  14. O. Ozatay, T. Hauet, S. H. Florez, J. A. Katine, A. Moser, J.-U. Thiele, L. Folks, and B. D. Terris, Appl. Phys. Lett. 95, 172502 (2009). https://doi.org/10.1063/1.3250924
  15. Keita Waseda, Ryosuke Doi, Budi Purnama, Satoru Yoshimura, Yukio Nozaki, and Kimihide Matsuyama, IEEE Trans. Magn. 44, 2483 (2008). https://doi.org/10.1109/TMAG.2008.2003068
  16. K. J. Lee and T. D. Lee, J. Appl. Phys. 91, 7706 (2002). https://doi.org/10.1063/1.1454977
  17. Budi Purnama, Thermally Assisted Magnetization Reversal in Perpendicularly Magnetized Thin Film, (Doctoral Thesis), Electronics Department Graduated School of Information Science and Electrical Engineering, Kyushu University, Japan (2009), pp. 12-43.
  18. T. Schrelf, J. Fidler, D. Suess, W. Scholz, and V. Tsiantos, Handbook of Advanced Magnetic Materials: Micromagnetic Simulation of Dynamic and Thermal Effects. Volume I, Chanpter 4, Tsinghua University Press, China (2006) pp. 128-146.
  19. D. P. Agustina Candra, Suryasatriya Trihandaru, and Nur Aji Wibowo, Int. J. Sci. Res. 2, 48 (2013).
  20. I. Galanakis, J. Phys.: Conden. Matt. 14, (2002). Doi: 10.1088/0953-8984/14/25/303. https://doi.org/10.1088/0953-8984/14/25/303
  21. Koichiro Inomata, Naomichi Ikeda, Nobuki Tezuka, Ryogo Goto, Satoshi Sugimoto, Marek Wojcik, and Eva Jedryka, Science and Technology of Advanced Materials 9, (2008). Doi: 10.1088/1468-6996/9/1/014101. https://doi.org/10.1088/1468-6996/9/1/014101
  22. T. Kawanabe, and M. Naoe, Journal de Physique, Colloque C8, Supplement au no 12, Tome 49, C8-1783-1784 (1988). Available at http://dx.doi.org/10.1051/jphyscol: 1988 8813. https://doi.org/10.1051/jphyscol:19888813
  23. Budi Purnama, Masashi Koga, Yukio Nozaki, and Kimihide Matsuyama, J. Magn. Magn. Mater. 321, 1325 (2009). https://doi.org/10.1016/j.jmmm.2008.12.003
  24. T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afanasiev, B. A. Ivanov, A. M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, Th. Rasing, and A. V. Kimel, Nature Communications 3, 666 (2012). Doi: 10.1038/ncomms1666. https://doi.org/10.1038/ncomms1666

Cited by

  1. Micromagnetic study of cooling effect on the writing field of BaFe, Pt/MnSb, and CoFeAl vol.1153, pp.1742-6596, 2019, https://doi.org/10.1088/1742-6596/1153/1/012054
  2. Magnetization switching dynamics in barium-ferrite nano-dot: dependence on magnetic damping constant vol.1153, pp.1742-6596, 2019, https://doi.org/10.1088/1742-6596/1153/1/012055