Effects of Magnetized Medium on In Vitro Maturation of Porcine Cumulus Cell-Oocyte Complexes

  • Kim, Yun-Jung (College of Animal Life Sciences, Kangwon National University) ;
  • Lee, Sang-Hee (College of Animal Life Sciences, Kangwon National University) ;
  • Jung, Soo-Jung (Financial Accounting, Seoul National University) ;
  • Park, Choon-Keun (College of Animal Life Sciences, Kangwon National University)
  • Received : 2014.03.04
  • Accepted : 2014.07.03
  • Published : 2014.09.30


The objective of this study was to study the effect of magnetized water on porcine cumulus cell-oocyte complexes (COCs). Oocytes obtained from female pig were cultured in a medium magnetized at 0, 2000, 4000, and 6000 Gauss (G) for 5 minutes using the neodymium magnet. Subsequently, intracellular hydrogen peroxide ($H_2O_2$) concentration, glutathione (GSH) activity, oocyte membrane integrity, anti-apoptosis factor Bcl-xL expression, and nuclear maturation were analyzed. The intracellular $H_2O_2$ levels in COCs cultured for 44 hours were not significantly different among the variously magnetized samples. However, GSH activity were significantly higher in the magnetized samples compared to the 0 G sample. The Bcl-xL mRNA expression in COCs cultured for 44 hours was higher in the 4000 G sample than other treatment groups. Membrane damage in COCs cultured for 22 and 44 hours was significantly lower in 4000 G group than control group. On the other hand, nuclear stages as maturation indicator significantly increased in 2000, 4000, and 6000 G groups compared to 0 G group. These results indicate that incubation of porcine oocytes and cumulus cells in magnetized medium improves intracellular GSH levels, membrane integrity and nuclear maturation, and inhibits apoptosis in vitro.


Supported by : Ministry for Food, Agriculture, Forestry and Fisheries


  1. T. Nagai, Theriogenology 55, 1291 (2001).
  2. M. G. Marques, C. Nicacio, V. P. de Oliveira, A. B. Nascimento, H. V. Caetano, C. M. Mendes, M. R. Mello, M. P. Milazzotto, M. E. Assumpcao, and J. A. Visintin, Anim. Reprod. Sci. 97, 375 (2001).
  3. M. R. Blano, S. Demyda, M. M. Mereno, and E. Genero, Biotech. Mol. Biol. Review 6, 155 (2001).
  4. P. Wongsrikeao, Y. Kaneshige, R. Ooki, M. Taniguchi, B. Agung, M. Nii, and T. Otoi, Reprod. Domest. Anim. 40, 166 (2005).
  5. L. R. Abeydeera and B. N. Day, Biol. Reprod. 57, 729 (1997).
  6. C. Matas, P. Coy, R. Romar, M. Marco, J. Gadea, and S. Ruiz, Reproduction 125, 133 (2003).
  7. A. M. G. Mantovani, C. Madeddu, E. L. Mura, E. Massa, G. Gramignano, M. R. Lusso, V. Murgia, P. Camboni, and L. Ferreli, J. Cell Mol. Med. 6, 570 (2002).
  8. P. J. Booth, P. Holm, and H. Callesen, Theriogenology. 63, 2040 (2005).
  9. P. Guerin, S. El Mouatassim, and Y. Menezo, Hum. Reprod. Update. 7, 175 (2001).
  10. H. Tamura, A. Takasaki, T. Taketani, M. Tanabe, F. Kizuka, L. Lee, I. Tamura, R. Maekawa, H. Aasada, Y. Yamagata, and N. Sugino, J. Ovarian Res. 5, 5 (2012).
  11. N. S. Hideki Tatemoto, and M. Norio. Biol. Reprod. 63, 805 (2000).
  12. L. R. Abeydeera, W. H. Wang, T. C. Cantley, R. S. Prather, and B. N. Day, Theriogenology 50, 747 (1998).
  13. D. G. de Matos and C. C. Furnus, Theriogenology 53, 761 (2000).
  14. J. Y. You, J. Y. Kim, J. M. Lim, and E. S. Lee, Theriogenology 74, 777 (2010).
  15. C. C. Furnus, D. G. de Matos, and D. F. Moses, Mol. Reprod. Dev. 51, 76 (1998).<76::AID-MRD9>3.0.CO;2-T
  16. C. S. Gardiner and D. J. Reed, Biol. Reprod. 51, 1307 (1994).
  17. K. A. Zuelke, S. C. Jeffay, R. M. Zucker, and S. D. Perreault. Mol. Reprod. Dev. 64, 106 (2003).
  18. S. Mufarrei, H. A. Batshan, M. I. Shalaby, and T. M. Shafey, Poult. Sci. 4, 96 (2005).
  19. N. Viet Linh, T. Q. Dang-Nguyen, B. X. Nguyen, N. Manabe, and T. Nagai, J. Reprod. Dev. 55, 594 (2009).
  20. J. Zhu, E. E. Telfer, J. Fletcher, A. Springbett, J. R. Dobrinsky, P. A. De Sousa, and I. Wilmut, Biol. Reprod. 66, 635 (2002).
  21. W. Sha, B. Z. Xu, M. Li, D. Liu, H. L. Feng, and Q. Y. Sun, Fertil. Steril. 93, 1650 (2010).
  22. C. M. Combelles, S. Gupta, and A. Agarwal, Reprod. Biomed. Online. 18, 864 (2009).
  23. S. Landolfo, H. Politi, D. Angelozzi, and I. Mannazzu, Biochim. Biophys. Acta 1780, 892 (2008).
  24. C. F. Martino and P. R. Castello, PLoS One 6, e22753 (2011).
  25. M. Hozayn and A. M. S. A. Qados, Agric. Biol. J. North Am. 1, 677 (2010).
  26. F. Carlos and P. R. C. Martion, PlLoS ONE 6, e22753 (2011).
  27. A. H. Hashish, M. A. El-Missiry, H. I. Abdelkader, and R. H. Abou-Saleh, Ecotoxicol. Environ. Saf. 71, 895 (2008).
  28. D. Biswas and S. H. Hyun, Theriogenology 76, 153 (2011).
  29. J. Fujii, Y. Iuchi, and F. Okada, Reprod. Biol. Endocrinol. 3, 43 (2005).
  30. S. Luperchio, S. Tamir, and S. R. Tannenbaum, Free Radical Biol. Med. 21, 513 (1996).
  31. S. D. Perreault, R. R. Barbee, and V. L. Slott, Dev. Biol. 125, 181 (1988).
  32. M. de Nicola, S. Cordisco, C. Cerella, M. C. Albertini, M. D'Alessio, A. Accorsi, A. Bergamaschi, A. Magrini, and L. Ghibelli, Ann. N. Y. Acad. Sci. 1090, 59 (2006).
  33. C. Fanelli, S. Coppola, R. Barone, C. Colussi, G. Gualandi, P. Volpe, and L. Ghibelli, FASEB J. 13, 95 (1999).
  34. J. J. Eppig. Dev. Biol. 89, 268 (1982).
  35. N. B. Gilula, M. L. Epstein, and W. H. Beers, J. Cell Biol. 78, 58 (1978).