Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines

  • Chung, Dae-Won (Department of Electrical Engineering, Honam University) ;
  • You, Yong-Min (Department of Electrical Engineering, Honam University)
  • Received : 2014.01.27
  • Accepted : 2014.07.01
  • Published : 2014.09.30


This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.


  1. F. J. Gieras, R. J. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, Springer, 2nd edition, 304 (2008).
  2. E. Muljadi, C. P. Butterfield, and Yih-huie Wan, IEEE Trans. Ind. Appl. 35, 831 (1999).
  3. N. F. Lombard and M. J. Kamper, IEEE Trans. Energy Conversion 14, 1051 (1999).
  4. R. J. Wang, M. J. Kamper, K. V. D. Westhuizen, and J. F. Gieras, IEEE Trans. Magn. 41, 55 (2005).
  5. U. K. Madawala and J. T. Boys, IEEE Trans. Magn. 41, 2384 (2005).
  6. H. C. Lovatt, V. S. Ramsden, and B. C. Mecrow, Proc. Inst. Electr. Eng. Electr. Power Appl. 145, 402 (1998).
  7. R. J. Hill-Cottingham, P. C. Coles, J. F. Eastham, F. Profumo, A. Tenconi, and G. Gianolio, Proc. 36th IEEE Ind. Appl. Conf. 1634 (2001).
  8. R. J. Hill-Cottingham, P. C. Coles, J. F. Eastham, F. Profumo, A. Tenconi, and G. Gianolio, Proc. 37th IEEE Ind. Appl. Conf. 1274 (2002).
  9. T. J. E. Miller, Design of Brushless Permanent Magnet Machines, University of Glasgow, UK, Magna Physics Publishing and Clarendon Press, Oxford (1994).
  10. F. Caricchi, F. Crescimbini, and E. Santini, IEEE Trans. Ind. Appl. 31, 1062 (1995).
  11. R. J. Hill-Cottingham, P. C. Coles, J. F. Eastham, F. Profumo, A. Tenconi, and G. Gianolio, IEEE Trans. Magn. 38, 3003 (2002).
  12. W. Fei, P. C. K. Luk, J. Jinupun, Proc. IET Power Electronics, Machines and Drives Conf. 623 (2009).
  13. D.-W. Chung, Trans. of KIEE 61, 1820 (2012).
  14. K. C. Kim and S. K. Lee, Maxwell 2D/3D Training Manual for User Applications, Ansoft Co. User Group, Seoul, Korea, 1234 (2006).
  15. R. Wang, H. Mohellebi, T. J. Flack, M. J. Kamper, J. Buys, and M. Feliachi, IEEE Trans. Magn. 38, 1357 (2002).
  16. J. F. Gieras, and M. Wing, New York: Marcel Dekker Inc. 242 (1997).
  17. Maxim Naumov, Incomplete-LU and Cholesky Preconditioned Iterative Methods Using CUSPARSE and CUBLAS, NVIDIA CUSPARSE and CUBLAS Libraries, develop.html
  18. A. Di Napoli, F. Caricchi, F. Crescimbini, and G. Noia, Proc. International Conference on the Evolution and Modern Aspects of Synchronous Machine August (1991).
  19. E. Spooner and B. J. Chalmers, IEE Proc. B 139, 497 (1992).
  20. H. G. Kim, Y. T. Seo, and D. K. Lee, Proc. ICEE2002 941 (2002).

Cited by

  1. Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines vol.20, pp.2, 2015,
  2. Characteristic Analysis for the Reduction Detent Force of Double-sided Slotted Type Permanent Magnet Linear Generator for Wave Energy Conversion vol.26, pp.1, 2016,
  3. Implementation of hybrid pattern search–genetic algorithm into optimizing axial-flux permanent magnet coreless generator (AFPMG) vol.99, pp.2, 2017,