• Received : 2012.04.04
  • Published : 2014.09.30


We prove the existence of uniform attractors $\mathcal{A}_{\varepsilon}$ in the space $H^1(\mathbb{R}^N){\cap}L^p(\mathbb{R}^N)$ for the following non-autonomous nonclassical diffusion equations on $\mathbb{R}^N$, $$u_t-{\varepsilon}{\Delta}u_t-{\Delta}u+f(x,u)+{\lambda}u=g(x,t),\;{\varepsilon}{\in}(0,1]$$. The upper semicontinuity of the uniform attractors $\{\mathcal{A}_{\varepsilon}\}_{{\varepsilon}{\in}[0,1]}$ at ${\varepsilon}=0$ is also studied.



Supported by : Vietnam Ministry of Education and Training


  1. E. C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), no. 3-4, 265-296.
  2. C. T. Anh and T. Q. Bao, Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Anal. 73 (2010), no. 2, 399-412.
  3. C. T. Anh and T. Q. Bao, Dynamics of non-autonomous nonclassical diffusion equations on $\mathbb{R}^N$, Commun. Pure Appl. Anal. 11 (2012), no. 3, 1231-1252.
  4. G. Chen and C. K. Zhong, Uniform attractors for non-autonomous p-Laplacian equation, Nonlinear Anal. 68 (2008), no. 11, 3349-3363.
  5. V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002.
  6. J.-L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969.
  7. J. C. Peter and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. 19 (1968), no. 4, 614-627.
  8. H. Song, S. Ma, and C. K. Zhong, Attractors of non-autonomous reaction-diffusion equations, Nonlinearity 22 (2009), no. 3, 667-681.
  9. H. Song and C. K. Zhong, Attractors of non-autonomous reaction-diffusion equations in Lp, Nonlinear Anal. 68 (2008), no. 7, 1890-1897.
  10. C. Sun, S. Wang, and C. K. Zhong, Global attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. Engl. Ser. 23 (2007), no. 7, 1271-1280.
  11. C. Sun and M. Yang, Dynamics of the nonclassical diffusion equations, Asymp. Anal. 59 (2008), no. 1-2, 51-81.
  12. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition, Philadelphia, 1995.
  13. T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal. 14 (1963), 1-26.
  14. C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, Encyclomedia of Physics, Springer, Berlin, 1995.
  15. B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D 179 (1999), no. 1, 41-52.
  16. S. Wang, D. Li, and C. K. Zhong, On the dynamic of a class of nonclassical parabolic equations, J. Math. Anal. Appl. 317 (2006), no. 2, 565-582.
  17. H. Wu and Z. Zhang, Asymptotic regularity for the nonclassical diffusion equation with lower regular forcing term, Dyn. Syst. 26 (2011), no. 4, 391-400.
  18. Y. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. Engl. Ser. 18 (2002), no. 2, 273-276.

Cited by

  1. Strong global attractors for nonclassical diffusion equation with fading memory vol.2017, pp.1, 2017,
  2. Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity vol.31, 2016,
  3. Random Attractors of Stochastic Non-Autonomous Nonclassical Diffusion Equations with Linear Memory on a Bounded Domain vol.09, pp.11, 2018,