DOI QR코드

DOI QR Code

ON THE LAST DIGIT AND THE LAST NON-ZERO DIGIT OF nn IN BASE b

  • Grau, Jose Maria ;
  • Oller-Marcen, Antonio M.
  • Received : 2012.04.13
  • Published : 2014.09.30

Abstract

In this paper we study the sequences defined by the last and the last non-zero digits of $n^n$ in base b. For the sequence given by the last digits of $n^n$ in base b, we prove its periodicity using different techniques than those used by W. Sierpinski and R. Hampel. In the case of the sequence given by the last non-zero digits of $n^n$ in base b (which had been studied only for b = 10) we show the non-periodicity of the sequence when b is an odd prime power and when it is even and square-free. We also show that if $b=2^2{^s}$ the sequence is periodic and conjecture that this is the only such case.

Keywords

last digit;last non-zero digit;$n^n$

References

  1. R. Crocker, On a new problem in number theory, Amer. Math. Monthly 73 (1966), 355-357. https://doi.org/10.2307/2315394
  2. R. Crocker, On residues of $n^n$, Amer. Math. Monthly 76 (1969), 1028-1029. https://doi.org/10.2307/2317129
  3. G. Dresden, Two irrational numbers from the last nonzero digits of $n^n$ and n!, Math. Mag. 74 (2001), 316-320. https://doi.org/10.2307/2691105
  4. G. Dresden, Three transcendental numbers from the last non-zero digits of $n^n$, $F_n$, and n!, Math. Mag. 81 (2008), no. 2, 96-105.
  5. R. Euler and J. Sadek, A number that gives the unit digit of $n^n$, J. Rec. Math. 29 (1998), no. 3, 203-204.
  6. J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arith. 16 (1969), 105-110. https://doi.org/10.4064/aa-16-2-105-110
  7. R. Hampel, The length of the shortest period of rests of number $n^n$, A$n^n$. Polon. Math. 1 (1955), 360-366. https://doi.org/10.4064/ap-1-2-360-366
  8. J. L. Lagrange, Oeuvres de Lagrange, Gautiers Villars, Paris 7, 1877.
  9. D. W. Robinson, The Fibonacci matrix modulo m, Fibonacci Quart. 1 (1963), no. 2, 29-36.
  10. D. B. Shapiro and S. D. Shapiro, Iterated exponents in number theory, Integers 7 (2007), A23, 19 pp.
  11. W. Shur, The last digit of $(^{2n}_n)$ and ${\sum}(^n_i)(^{2n-2i}_{n-i})$, Electron J. Combin. 4 (1997), no. 2, Research Paper 16, approx. 8 pp.
  12. W. Sierpinski, Sur la periodicite mod m de certaines suites infinies d'entiers, A$n^n$. Soc. Polon. Math. 23 (1950), 252-258.
  13. L. Somer, The residues of $n^n$ modulo p, Fibonacci Quart. 19 (1981), no. 2, 110-117.
  14. D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525-532. https://doi.org/10.2307/2309169