DOI QR코드

DOI QR Code

A BOUNDED KOHN NIRENBERG DOMAIN

  • Calamai, Simone
  • Received : 2012.05.23
  • Published : 2014.09.30

Abstract

Building on the famous domain of Kohn and Nirenberg we give an example of a domain which shares the important features of the Kohn Nirenberg domain, but which can also be shown to be ${\phi}$-bounded As an application, we remark that this example has compact automorphism group.

Keywords

Kohn Nirenberg domain;holomorphic boundedness

References

  1. E. Bedford and S. Pinchuk, Domains in $\mathbb{C}^2$ with noncompact automorphism group, Indiana Univ. Math. J. 47 (1998), no. 1, 199-222.
  2. J. Byun, On the automorphism group of the Kohn-Nirenberg domain, J. Math. Anal. Appl. 266 (2002), no. 2, 342-356. https://doi.org/10.1006/jmaa.2001.7736
  3. J. Byun, On the boundary accumulation points for the holomorphic automorphism groups, Michigan Math. J. 51 (2003), no. 2, 379-386. https://doi.org/10.1307/mmj/1060013203
  4. J. Byun and H. R. Cho, Explicit description for the automorphism group of the Kohn-Nirenberg domain, Math. Z. 263 (2009), no. 2, 295-305. https://doi.org/10.1007/s00209-008-0418-2
  5. J. E. Fornaess and B. Stensones, Lectures on Counterexamples in Several Complex Variables, Princeton University Press, 1987.
  6. J. J. Kohn and L. A. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265-268. https://doi.org/10.1007/BF01428194
  7. M. Kolar, Convexifiability and supporting function in $\mathbb{C}^2$, Math. Res. Lett. 2 (1995), no. 4, 505-513. https://doi.org/10.4310/MRL.1995.v2.n4.a10
  8. M. Kolar, Generalized models and local invariants of Kohn-Nirenberg domains, Math. Z. 259 (2008), no. 2, 277-286. https://doi.org/10.1007/s00209-007-0224-2
  9. R. Narasimhan, Several Complex Variables, University of Chicago press, Chicago 1971.
  10. G. D. Sala, A. Saracco, A. Simioniuc, and G. Tomassini, Lectures on Complex Analysis and Analytic Geometry, Edizioni della Normale, 2006.