DOI QR코드

DOI QR Code

DUALITY OF QK-TYPE SPACES

  • Zhan, Mujun (Department of Mathematics Guangzhou University, Department of Mathematics GuangDong Pharmaceutical College) ;
  • Cao, Guangfu (Department of Mathematics GuangDong Pharmaceutical College)
  • 투고 : 2013.03.28
  • 발행 : 2014.09.30

초록

For BMO, it is well known that $VMO^{**}=BMO$. In this paper such duality results of $Q_K$-type spaces are obtained which generalize the results by M. Pavlovi$\acute{c}$ and J. Xiao.

참고문헌

  1. M. Essen and H. Wulan, On analytic and meromorphic functions and spaces of $Q_K$ type, Illinois J. Math. 46 (2002), no. 4, 1233-1258.
  2. M. Essen, H. Wulan, and J. Xiao, Several function-theoretic characterizations of Mobius invariant $Q_K$ spaces, J. Funct. Anal. 230 (2006), no. 1, 78-115. https://doi.org/10.1016/j.jfa.2005.07.004
  3. M. Lindstrom and N. Palmberg, Duality of a large family of analytic function spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 251-267.
  4. K. Ng, On a theorem of Dixmer, Math. Scand. 29 (1971), 279-280. https://doi.org/10.7146/math.scand.a-11054
  5. M. Pavlovic and J. Xiao, Splitting planar isoperimetric inequality through preduality of $Q_p$, 0 < p < 1, J. Funct. Anal. 233 (2006), no. 1, 40-59. https://doi.org/10.1016/j.jfa.2005.07.011
  6. S. Stevic, On an integral operator on the unit ball in $C^n$, J. Inequal. Appl. 1 (2005), no. 1, 81-88.
  7. H. Wulan and J. Zhou, $Q_K$ type spaces of analytic functions, J. Funct. Spaces Appl. 4 (2006), no. 1, 73-84. https://doi.org/10.1155/2006/910813
  8. H. Wulan and J. Zhou, The higher order derivatives of $Q_K$ type spaces, J. Math. Anal. Appl. 332 (2007), no. 2, 1216-1228. https://doi.org/10.1016/j.jmaa.2006.10.082
  9. J. Zhou, $Q_K$ Type Spaces of Analytic Functions, Thesis for Master of Science, ShanTou University, ShanTou, 2005.
  10. K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.