DOI QR코드

DOI QR Code

Effect of Clay-Mineral Composition on Flexural Strength of Clay-based Membranes

점토 광물 조성이 점토기반 분리막의 곡강도에 미치는 영향

  • Lee, Young-Il (Department of Optometry and Vision Science, Dongnam Health College) ;
  • Eom, Jung-Hye (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, In-Hyuck (Engineering Ceramics Group, Korea Institute of Materials Science)
  • 이영일 (동남보건대학교 안경광학과) ;
  • 엄정혜 (서울시립대학교 신소재공학과 기능성세라믹스연구실) ;
  • 김영욱 (서울시립대학교 신소재공학과 기능성세라믹스연구실) ;
  • 송인혁 (재료연구소 엔지니어링세라믹연구그룹)
  • Received : 2014.07.29
  • Accepted : 2014.08.28
  • Published : 2014.09.30

Abstract

Clay-based membranes with submicron pore size were successfully prepared by a simple pressing process using low-cost starting materials(e.g., kaolin (K), bentonite (B), talc (T), and sodium borate). The green bodies were sintered at $1000^{\circ}C$ for 2 h in air. The effect of clay-mineral composition on the flexural strength of clay-based membranes was investigated. The porosity of the clay-based membranes could be controlled within the range of 34 - 42% by adjusting the starting composition. The flexural strength of the low-cost membranes depended on both the porosity and the ${\alpha}$-quartz content. In turn, the porosity and ${\alpha}$-quartz content were affected by the (B+T) /(K+B+T) ratio. The plot of strength relative to this ratio, showed a maximum when the ratio was 0.4. The typical flexural strength of these clay-based membranes (with ratio 0.4) was 28 MPa at 34% porosity.

Acknowledgement

Supported by : 한국기계연구원

References

  1. C. E. Reid and E. J. Breton, "Water and Ion Flow Across Cellulosic Membranes," J. Appl. Polym. Sci., 1 [2], 133-43 (1959). https://doi.org/10.1002/app.1959.070010202
  2. B. V. M. Kumar and Y.-W. Kim, "Processing and Polysiloxane-Derived Porous Ceramics: A Review," Sci. Tech. Adv. Mater., 11, 044303 (2010). https://doi.org/10.1088/1468-6996/11/4/044303
  3. D. Y. Shin, S. M. Han, and S. G. Choi, "Synthesis of Ceramic Support for Immobilization of Microorganisms Using Fly Ash(in Korean)," J. Kor. Ceram. Soc., 39 [9], 857-62 (2002). https://doi.org/10.4191/KCERS.2002.39.9.857
  4. D.-K. Lim and E.-T. Kang, "Porous Materials from Waste Bottle Glasses by Hydrothermal Treatment(in Korean)," J. Kor. Ceram. Soc., 46 [3], 275-81 (2009). https://doi.org/10.4191/KCERS.2009.46.3.275
  5. J. Park, Y. Kim, and M. Jung, "Preparation of Porous SiC Ceramics Using Polycarbosilane Derivatives as Binding Agents(in Korean)," J. Kor. Ceram. Soc., 49 [5], 412-46 (2012). https://doi.org/10.4191/kcers.2012.49.5.412
  6. K. M. Nam, Y. J. Lee, W. T. Kwon, S. R. Kim, H. M. Lim, H. Kim, and Y. Kim, "Preparation of $Al_2O_3$ Platelet and Its Mechanical/Thermal Characterization(in Korean)," J. Kor. Ceram. Soc., 49 [5], 438-41 (2012). https://doi.org/10.4191/kcers.2012.49.5.438
  7. E.-J. Lee, J.-H. Ha, Y.-D. Kim, and I.-H. Song, "Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia( in Korean)," J. Kor. Ceram. Soc., 49 [6], 566-74 (2012). https://doi.org/10.4191/kcers.2012.49.6.566
  8. J. H. Eom, Y.-W. Kim, and I. H. Song, "Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-filled Polysiloxane," J. Kor. Ceram. Soc., 49 [6], 625-30 (2012). https://doi.org/10.4191/kcers.2012.49.6.625
  9. G. S. Park, Y.-H. Seong, J. H. Yu, S. K. Woo, and M. H. Han, "Fabrication and Mechanical Properties of High-strength Porous Supports for High Temperature Oxygen Transport Membranes(in Korean)," J. Kor. Ceram. Soc., 50 [6], 423-28 (2013). https://doi.org/10.4191/kcers.2013.50.6.423
  10. J. H. Eom, Y.-W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 [3], 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
  11. Y. H. Wang, X. Q. Liu, and G. Y. Meng, "Dispersion and Stability of 8 mol% Yttria Stabilized Zirconia Suspensions for Dip-Coating Filtration Membranes," Ceram. Int., 33, 1025-31 (2007). https://doi.org/10.1016/j.ceramint.2006.03.011
  12. K. A. Defriend, M. R. Wiesner, and A. R. Barron, "Alumina and Aluminate Ultrafiltration Membranes Derived Alumina Nanoparticles," J. Membr. Sci., 224 [1-2], 11-28 (2003). https://doi.org/10.1016/S0376-7388(03)00344-2
  13. H. Qi, Y. Fan, W. Xing, and L. Winnubst, "Effect of $TiO_2$ Doping on the Characteristics of Macroporous $Al_2O_3/TiO_2$ Membrane Supports," J. Eur. Ceram. Soc., 30 [6], 1317-25 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.12.011
  14. J. H. Eom, Y.-W. Kim, and I. H. Song, "Processing of Kaolin-based Microfiltration Membranes," J. Kor. Ceram. Soc., 50 [5], 341-47 (2013). https://doi.org/10.4191/kcers.2013.50.5.341
  15. F. Bouzerara, A. Harabi, S. Achour, and A. Larbot, "Porous Ceramic Supports for Membranes Prepared from Kaolin and Doloma Mixtures," J. Eur. Ceram. Soc., 26 [9], 1663-71 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.244
  16. M. Kazemimoghadam and T. Mohammadi, "Preparation of Nano Pore Hydroxysodalite Zeolite Membranes Using of Kaolin Clay and Chemical Sources," Desalination, 278 [1-3], 438-42 (2011). https://doi.org/10.1016/j.desal.2011.05.042
  17. A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, "Self-assembly of a Silica-surfactant Nanocomposite in a Porous Alumina Membrane," Nat. Mater., 3 [5], 337-41 (2004). https://doi.org/10.1038/nmat1107
  18. C. R. Martin, "Nanomaterials: A Membrane-based Synthetic Approach," Science, 266 [5193], 1961-66 (1994). https://doi.org/10.1126/science.266.5193.1961
  19. C. R. Martin, "Membrane-based Synthesis of Nanomaterials," Chem. Mater., 8 [8], 1739-46 (1996). https://doi.org/10.1021/cm960166s
  20. K. Y. Lim, Y.-W. Kim, and I. H. Song, "Porous Sodium Borate-bonded SiC Ceramics," Ceram. Int., 39, 6827-34 (2013). https://doi.org/10.1016/j.ceramint.2013.02.014
  21. S. Kumar and W.-L. Yong, "Effect of Bentonite on Compacted Clay Landfill Barriers," Soil Sediment Contam., 11 [90], 71-89 (2002). https://doi.org/10.1080/20025891106709
  22. N. Saffaj, M. Persin, S. A. Younsi, A. Albizan, M. Cretin, and A. Larbot, "Elaboration and Characterization of Microfiltration and Ultrafiltration Membranes Deposited on Raw Support Prepared from Natural Moroccan Clay: Application to Filtration of Solution Containing Dyes and Salts," Appl. Clay Sci., 31 [1-2], 110-19 (2006). https://doi.org/10.1016/j.clay.2005.07.002
  23. S. Emani, R. Uppaluri, and M. K. Purkait, "Preparation and Characterization of Low Cost Ceramic Membranes for Mosambi Juice Clarification," Desalination, 317 [15], 32-40 (2013). https://doi.org/10.1016/j.desal.2013.02.024

Cited by

  1. Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.180
  2. Effect of Strontium Carbonate Content on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.467