DOI QR코드

DOI QR Code

Pressureless Sintered Nitride Composites in the AlN-Al2O3 System

AlN-Al2O3 계에서의 상압소결 질화물복합체

  • Kim, Young Woo (SOFC Research Project, Research Institute of Industrial Science and Technology) ;
  • Kim, Kyu Heon (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Dong Hyun (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog Young (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Hong Chae (School of Materials Science and Engineering, Pusan National University)
  • 김영우 (포항산업과학연구원 SOFC연구단) ;
  • 김규헌 (부산대학교 재료공학부) ;
  • 김동현 (부산대학교 재료공학부) ;
  • 윤석영 (부산대학교 재료공학부) ;
  • 박홍채 (부산대학교 재료공학부)
  • Received : 2014.07.11
  • Accepted : 2014.09.02
  • Published : 2014.09.30

Abstract

Particulate nitride composites have been fabricated by sintering the compacted powder of AlN and 5 - 64.3 mol% $Al_2O_3$, with a small addition of $Y_2O_3$ ($Y_2O_3$/AlN, 1 wt%), in 1-atm nitrogen gas at $1650-1900^{\circ}C$. The composites were characterized in terms of sintering behavior, phase relations, microstructure and thermal shock resistance. AlN, 27R AlN pseudopolytype, and alminium oxynitride (AlON, $5AlN{\cdot}9Al_2O_3$) were found to existin the sintered material. Regardless of batch composition, the AlN-$Al_2O_3$ powder compacts exhibited similar sintering behavior; however, the degree of shrinkage commonly increased with increasing $Al_2O_3$ content, consequently giving high sintered bulk density. By increasing the $Al_2O_3$ addition up to ${\geq}50 mol%$, the matrix phase in the sintered material was converted from AlN or 27R to AlON. Above $1850^{\circ}C$, a liquid phase was formed by the reaction of $Al_2O_3$ with AlN, aided by $Y_2O_3$ and mainly existed at the grain boundaries of AlON. Thermal shock resistance was superior in the sintered composite consisting of AlON with dispersed AlN or AlN matrix phase.

Acknowledgement

Supported by : 부산대학교

References

  1. A. Lejus, "Formation at High Temperature of Nonstoichiometric Spinels and of Derived Phases in Several Oxide Systems Based on Alumina and in the System Alumina-Aluminum Nitride," Rev. Int. Hautes Temp. Refract., 1, 53-95 (1964).
  2. J. W. McCauley, "A Simple Model for Aluminum Oxynitride Spinel," J. Am. Ceram. Soc., 61 [7-8], 372-73 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09336.x
  3. H. Takebe, T. Kameda, M. Komatsu, K. Komeya, and K. Morinaga, "Fabrication of Translucent Sintered Aluminum Oxynitride Spinel (ALON)," J. Ceram. Sco. Jpn. Inter. Edn., 97 [1122], 163-69 (1989).
  4. G. Yamaguchi, "On the Refractive Power of the Lower Valent Al Ion (Al$^+$ or Al$^{++}$) in the Crystal," Bull. Chem. Soc. Jpn., 23 [3], 89-90 (1950). https://doi.org/10.1246/bcsj.23.89
  5. H. X. Willems, M. M. R. M. Hendrix, G. de With, and R. Metselaar, "Thermodynamics of Alon II: Phase Relations," J. Eur. Ceram. Soc., 10 [4], 339-46 (1992). https://doi.org/10.1016/0955-2219(92)90089-V
  6. J. W. McCauley and N. D. Corbin, "Phase Relations and Reaction Sintering of Transparent Cubic Aluminum Oxynitride (AlON)," J. Am. Ceram. Soc., 62 [9-10], 459-76 (1979).
  7. N. D. Corbin, "Aluminum Oxynitride Spinel: A Review," J. Eur. Ceram. Soc., 5 [3], 143-54 (1989). https://doi.org/10.1016/0955-2219(89)90030-7
  8. T. M. Hartnett, E. A. Maguire, R. L. Gentilman, N. D. Corbin, and J. W. McCauley, "Aluminum Oxynitride Spinel (ALON): A New Optical and Multimode Window Material," Ceram. Eng. Sci. Proc., 3, 67-76 (1982).
  9. G. D. Quinn, N. D. Corbin, and J. W. McCauley, "Thermomechanical Properties of Aluminum Oxynitride Spinel," Am. Ceram. Soc. Bull., 63, 723-30 (1984).
  10. N. D. Corbin, The Influence of Carbon, Nitrogen and Argon on Aluminum Oxynitride Spinel Formation; pp. 113-16, in M. S. Thesis, Massachusetts Institute of Technology, Cambridge, 1982.
  11. E. A. Maguire, T. M. Harnet, and R. L. Gentilman, "Method of Producing Aluminum Oxynitride Having Improved Optical Characteristics," U. S. Patent No. 4686070, 11 August 1987.
  12. I. U. Kim and V. L. Richards, "High-temperature Electrical Conductivity of Aluminum Oxynitride Spinel," J. Am. Ceram. Soc., 68, C-120 (1985).
  13. Y. W. Kim, B. H. Park, H. C. Park, Y. B. Lee, K. D. Oh, and F. L. Riley, "Sintering, Microstructure, and Mechanical Properties of AlON-AlN Particulate Composites," Brit. Ceram. Trans., 97 [3], 97-104 (1997).
  14. Y. W. Kim, H. C. Park, Y. B. Lee, K. D. Oh, and R. Stevens, "Reaction Sintering and Microstructural Development in the System $Al_2O_3$-AlN," J. Eur. Ceram. Soc., 21 [13], 2383-91 (2001). https://doi.org/10.1016/S0955-2219(01)00200-X
  15. Y. W. Kim, Y. W. Oh, S. Y. Yoon, R. Stevens, and H. C. Park, "Thermal Diffusivity of Reaction-Sintered AlON/$Al_2O_3$ Particulate Composites," Ceram. Inter., 34 [8], 1849-55 (2008). https://doi.org/10.1016/j.ceramint.2007.06.004
  16. L. J. Gauckler and G. Petzow, "Representation of Multicomponent Silicon Nitride Based Systems," pp. 41-60 in Nitrogen Ceramics, Ed. by F. L. Riley, Noordhoff Publishing Co., Leyden, 1977.
  17. J. W. McCauley and N. D. Corbin, "High Temperature Reactions and Microstructures in the $Al_2O_3$-AlN System," pp. 111-18 in Progress in Nitrogen Ceramics, Ed. by F. L. Riley, Martinus Nijhoff, Boston, 1983.
  18. P. S. de Baranda, A. K. Knudsen, and E. Ruh, "Effect of CaO on the Thermal Conductivity of Aluminum Nitride," J. Am. Ceram. Soc., 76 [7], 1751-60 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb06644.x
  19. P. S. de Baranda, A. K. Knudsen, and E. Ruh, "Effect of Silica on the Thermal Conductivity of Aluminum Nitride," J. Am. Ceram. Soc., 76, 1761-71 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb06645.x
  20. J. H. Harris, R. A. Youngman, and R. G. Teller, "On the Nature of the Oxygen-related Defect in Aluminum Nitride," J. Mater. Res., 5, 1763-73 (1990). https://doi.org/10.1557/JMR.1990.1763
  21. K. Komeya and F. Noda, "Aluminum Nitride and Silicon Nitride for High Temperature Vehicular Gas Turbine Engines," Toshiba Review, 92, 13-8 (1974).