DOI QR코드

DOI QR Code

Electronic Structure of the SrTiO3(001) Surfaces: Effects of the Oxygen Vacancy and Hydrogen Adsorption

Takeyasua, K.;Fukadaa, K.;Oguraa, S.;Matsumotob, M.;Fukutania, K.

  • Received : 2014.09.24
  • Accepted : 2014.09.30
  • Published : 2014.09.30

Abstract

The influence of electron irradiation and hydrogen adsorption on the electronic structure of the $SrTiO_3$ (001) surface was investigated by ultraviolet photoemission spectroscopy (UPS). Upon electron irradiation of the surface, UPS revealed an electronic state within the band gap (in-gap state: IGS) with the surface kept at $1{\times}1$. This is considered to originate from oxygen vacancies at the topmost surface formed by electron-stimulated desorption of oxygen. Electron irradiation also caused a downward shift of the valence band maximum indicating downward band-bending and formation of a conductive layer on the surface. With oxygen dosage on the electron-irradiated surface, on the other hand, the IGS intensity was decreased along with upward band-bending, which points to disappearance of the conductive layer. The results indicate that electron irradiation and oxygen dosage allow us to control the surface electronic structure between semiconducting (nearly-vacancy free: NVF) and metallic (oxygen de cient: OD) regimes by changing the density of the oxygen vacancy. When the NVF surface was exposed to atomic hydrogen, in-gap states were induced along with downward band bending. The hydrogen saturation coverage was evaluated to be $3.1{\pm}0.8{\times}10^{14}cm^{-2}$ with nuclear reaction analysis. From the IGS intensity and H coverage, we argue that H is positively charged as $H^{{\sim}0:3+}$ on the NVF surface. On the OD surface, on the other hand, the IGS intensity due to oxygen vacancies was found to decrease to half the initial value with molecular hydrogen dosage. H is expected to be negatively charged as $H^-$ on the OD surface by occupying the oxygen vacancy site.

Keywords

Oxygen vacancy;$SrTiO_3$;Hydrogen adsorption

References

  1. Y. Chen, V. M. Orera, R. Gonzalez, R. T. Williams, G. P. Williams, G. H. Rosenblatt, and G. J. Pogatshnik, Phys. Rev. B 42, 1410 (1990). https://doi.org/10.1103/PhysRevB.42.1410
  2. K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, and H. Hosono, Nature 419, 462 (2002). https://doi.org/10.1038/nature01053
  3. Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. E. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, Nat. Mater. 11, 507 (2012). https://doi.org/10.1038/nmat3302
  4. F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Phys. Rev. B 80, 245203 (2009). https://doi.org/10.1103/PhysRevB.80.245203
  5. Y. Iwazaki, T. Suzuki, and S. Tsuneyuki, J. Appl. Phys. 108, 83705 (2010). https://doi.org/10.1063/1.3483243
  6. D. R. Lide, CRC handbook of chemistry and physics (CRC Press, Boca Raton London New York Washington, D.C., 2001), 82nd ed.
  7. F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gra, D. Gal, S. Ru, and D. Cahen, J. Phys. Chem. B 105, 6347 (2001). https://doi.org/10.1021/jp010380q
  8. P. P. Ewald, Ann. Phys. 64, 253 (1921).
  9. G. G. Libowitz and T. R. P. Gibb Jr., J. Phys. Chem. 60, 510 (1956). https://doi.org/10.1021/j150538a036
  10. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009). https://doi.org/10.1039/b800489g
  11. Y. Kuo and K. J. Klabunde, Nanotechnology 23, 294001 (2012). https://doi.org/10.1088/0957-4484/23/29/294001
  12. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature 430, 657 (2004). https://doi.org/10.1038/nature02756
  13. V. E. Henrich, Prog. Surf. Sci. 9, 143 (1979). https://doi.org/10.1016/0079-6816(79)90011-X
  14. S. Azad, M. H. Engelhard, and L.-Q. Wang, J. Phys. Chem. B 109, 10327 (2005). https://doi.org/10.1021/jp045864b
  15. J. Baniecki, M. Ishii, K. Kurihara, K. Yamanaka, T. Yano, K. Shinozaki, T. Imada, K. Nozaki, and N. Kin, Phys. Rev. B 78, 195415 (2008). https://doi.org/10.1103/PhysRevB.78.195415
  16. J. Shen, H. Lee, R. Valent, and H. O. Jeschke, Phys. Rev. B 86, 195119 (2012). https://doi.org/10.1103/PhysRevB.86.195119
  17. O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold, Science 317, 1052 (2007). https://doi.org/10.1126/science.1144787
  18. C. M. Yim, C. L. Pang and G. Thornton, Phys. Rev. Lett. 104, 036806 (2010). https://doi.org/10.1103/PhysRevLett.104.036806
  19. M. D'Angelo, R. Yukawa, K. Ozawa, S. Yamamoto, T. Hirahara, S. Hasegawa, M. Silly, F. Sirotti, and I. Matsuda, Phys. Rev. Lett. 108, 116802 (2012). https://doi.org/10.1103/PhysRevLett.108.116802
  20. R. Yukawa, S. Yamamoto, K. Ozawa, M. D'Angelo, M. G. Silly, F. Sirotti, and I. Matsuda, Phys. Rev. B 87, 115314 (2013). https://doi.org/10.1103/PhysRevB.87.115314
  21. F. Lin, S. Wang, F. Zheng, G. Zhou, J. Wu, B. L. Gu, and W. Duan, Phys. Rev. B 79, 35311 (2009). https://doi.org/10.1103/PhysRevB.79.035311
  22. B. Jalan, R. Engel-Herbert, T. E. Mates, and S. Stemmer, Appl. Phys. Lett. 93, 52907 (2008). https://doi.org/10.1063/1.2969037
  23. J.-H. Ahn, P. C. McIntyre, L. W. Mirkarimi, S. R. Gilbert, J. Amano, and M. Schulberg, Appl. Phys. Lett. 77, 1378 (2000). https://doi.org/10.1063/1.1290139
  24. Y. Iwazaki, Y. Gohda, and S. Tsuneyuki, APL Materials 2, 012103 (2014). https://doi.org/10.1063/1.4854355
  25. S. Ferrer and G. A. Somorjai, Surf. Sci. 94, 41 (1980). https://doi.org/10.1016/0039-6028(80)90155-7
  26. F. T. Wagner, S. Ferrer, and G. A. Somorjai, Surf. Sci. 101, 462 (1980). https://doi.org/10.1016/0039-6028(80)90641-X
  27. A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhes, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fevre, G. Herrantz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthelemy, and M. J. Rozenberg, Nature 469, 189 (2011). https://doi.org/10.1038/nature09720
  28. W. Meevasana, P. D. C. King, R. H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiririt-thigul, F. Baumberger, and Z.-X. Shen, Nat. Mater. 10, 114 (2011). https://doi.org/10.1038/nmat2943
  29. K. Takeyasu, K. Fukada, M. Matsumoto, and K. Fukutani, J. Phys.: Condens. Matter 25, 162202 (2013). https://doi.org/10.1088/0953-8984/25/16/162202
  30. K. Takeyasu, K. Fukada, S. Ogura, M. Matsumoto, and K. Fukutani, J. Chem. Phys. 140, 084703 (2014). https://doi.org/10.1063/1.4866645
  31. Y. Liang and D. A. Bonnell, Surf. Sci. 310, 128 (1994). https://doi.org/10.1016/0039-6028(94)91378-1
  32. K. Fukutani, Curr. Opin. Solid State Mater. Sci. 6, 153 (2002). https://doi.org/10.1016/S1359-0286(02)00039-6
  33. M. Wilde and K. Fukutani, Surf. Sci. Rep. in press.
  34. J. F. Zieqler, Handbook of stopping cross-sections for energetic ions in all elements (Pergamon Press, New York, 1980).
  35. K. Fukutani, A. Itoh, M. Wilde, and M. Matsumoto, Phys. Rev. Lett. 88, 116101 (2002). https://doi.org/10.1103/PhysRevLett.88.116101
  36. V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev. B 17, 4908 (1978). https://doi.org/10.1103/PhysRevB.17.4908
  37. V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Solid Stat. Commun. 24, 623 (1977). https://doi.org/10.1016/0038-1098(77)90376-3
  38. A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima, Y. Tokura, M. Abbate, F. M. F. de Groot, M. T. Czyzyk, and J. C. Fuggle, Phys. Rev. B 46, 9841 (1992). https://doi.org/10.1103/PhysRevB.46.9841
  39. J. L. M. van Mechelen, D. van der Marel, C. Grimaldi, A. B. Kuzmenko, N. P. Armitage, N. Reyren, H. Hagemann, and I. I. Mazin, Phys. Rev. Lett. 100, 226403 (2008). https://doi.org/10.1103/PhysRevLett.100.226403
  40. Y. Ishida, R. Eguchi, M. Matsunami, K. Horiba, M. Taguchi, and A. Chainani, Phys. Rev. Lett. 100, 56401 (2008). https://doi.org/10.1103/PhysRevLett.100.056401
  41. R. Moos and K. H. Hardtl, J. Am. Ceram. Soc. 80, 2549 (1997).
  42. A. Rothschild, W. Menesklou, H. L. Tuller, and I.-T. Ellen, Chem. Mater. 18, 3651 (2006). https://doi.org/10.1021/cm052803x
  43. Q. Fu and T. Wagner, J. Phys. Chem. B 109, 11697 (2005). https://doi.org/10.1021/jp050601i
  44. Z. Hou and K. Terakura, J. Phys. Soc. Jpn. 79, 114704 (2010). https://doi.org/10.1143/JPSJ.79.114704
  45. M. A. Henderson, W. S. Epling, C. L. Perkins, C. H. F. Peden, and U. Diebold, J. Phys. Chem. B 103, 5328 (1999).
  46. P. A. Thiel and T. E. Madey, Surf. Sci. Rep. 7, 211 (1990).
  47. J. Tao, Q. Cuan, X.-Q. Gong, and M. Batzill, J. Phys. Chem. C 116, 20438 (2012). https://doi.org/10.1021/jp3064678
  48. E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S. Kim, and C. Hwang, Phys. Rev. B 73, 193202 (2006). https://doi.org/10.1103/PhysRevB.73.193202
  49. R. Astala and P. D. Bristowe, Modelling Simul. Mater. Sci. Eng. 9, 415 (2001). https://doi.org/10.1088/0965-0393/9/5/306
  50. R. C. Neville, B. Hoeneisen, and C. A. Mead, J. Appl. Phys. 43, 2124 (1972). https://doi.org/10.1063/1.1661463
  51. Y. Chen, M. M. Abraham, L. C. Templeton, and W. P. Unruh, Phys. Rev. B 11, 881 (1975). https://doi.org/10.1103/PhysRevB.11.881

Acknowledgement

Supported by : Japan Society for the Promotion of Science (JSPS)