Optical and Structural Properties of Emerging Dilute III-V Bismides

Santos, B.H. Bononi Dos;Gobatoa, Y. Galvao;Heninib, M.

  • 투고 : 2014.09.15
  • 심사 : 2014.09.19
  • 발행 : 2014.09.30


In this paper, we present a review of optical and structural studies of $GaBi_xAs_{1-x}$ epilayers grown by Molecular Beam Epitaxy (MBE) on (311)B and (001) GaAs substrates with different As fluxes. The results indicate that under near-stoichiometric conditions the bismuth incorporation is higher for samples grown on (311)B GaAs substrates than for those grown on (001) GaAs. In addition, carrier localization effects in GaBiAs layers are clearly revealed for both samples by optical measurements. The (311)B samples showed evidence of higher density of defects. It has also been found that the nonradiative centers play a significant role in the recombination process in this material system. The influence of post-growth annealing on the microstructural, optical, and magneto-optical properties was also investigated. An important improvement of optical and spin properties after thermal annealing due to the reduction of defects in the GaBiAs layers was observed.


Bismides;Molecular Beam Epitaxy;Defects;Growth;GaAsBi alloys


  1. H. Tong, X. Marie, and M. W. Wu, J. Appl. Phys. 112, 063701 (2012).
  2. G. Ciatto, E. C. Young, F. Glas, J. Chen, R. Alonso Mori and T. Tiedje, Phys. Rev. B 78, 035325 (2008).
  3. G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, Phys. Rev. B 82, 201304 (2010).
  4. D. L. Sales et al, Appl. Phys. Lett. 98, 101902 (2011).
  5. R. Kudrawiec, P. Poloczek, J. Misiewicz, M. Shafi, J. Ibanez, R. H. Mari, M. Henini, M. Schmidbauer, S. V. Novikov, L. Turyanska, S. I. Molina, D. L. Sales, and M. F. Chisholm, Microelectronics Journal 40, 537 (2009).
  6. J. F. Rodrigo, D. L. Sales, M. Shafi, M. Henini, L. Turyanska, S. Novikov, and S. I. Molina, Applied Surface Science 256, 5688 (2010).
  7. R. Kudrawiec, M. Syperek, P. Poloczek, J. Misiewicz, R. H. Mari, M. Shafi, M. Henini, Y. Galvao Gobato, S. V. Novikov, J. Ibanez, M. Schmidbauer, and S. I. Molina, J. Appl. Phys. 106, 023518 (2009).
  8. O. M. Lemine, A. Alkaoud, H. V. Avanco Galeti, V. Orsi Gordo, Y. Galvao Gobato, Houcine Bouzid, A. Hajry, and M. Henini, Superlattices and Microstructures 65, 48 (2014).
  9. A. R. H. Carvalho, V. Orsi Gordo, H. V. A. Galeti, Y. Galvao Gobato, M. P. F. de Godoy, R. Kudrawiec, O. M. Lemine, and M. Henini, J. Phys. D: Appl. Phys. 47, 075103 (2014).
  10. A. R. Mohmad, F. Bastiman, C. J. Hunter, R. Richards, S. J. Sweeney, J. S. Ng, and J. P. R. David, Appl. Phys. Lett. 101, 012106 (2012).
  11. A. R. Mohmad, F. Bastiman, C. J. Hunter, J. S. Ng, S. J. Sweeney, and J. P. R. David, Appl. Phys. Lett. 99, 042107 (2011).
  12. A. J. Ptak, France R., D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C. S. J. Jiang, Cryst. Growth 338, 107 (2012).
  13. S. J. Sweeney and S. R. Jin, J. Appl. Phys. 113, 043110 (2013).
  14. B. Pursley, M. Luengo-Kovac, G. Vardar, R. S. Goldman, and V. Sih, Appl. Phys. Lett. 102, 022420 (2013).
  15. S. Mazzucato et al, Appl. Phys. Lett. 102, 252107 (2013).
  16. S. Mazzucato et al, Semicond. Sci. Technol. 28, 022001 (2013).
  17. M. Henini, J. Ibanez, M. Schmidbauer, M. Shafi, S. V. Novikov, L. Turyanska, S. I. Molina, D. L. Sales, M. F. Chisholm, and J. Misiewicz, Appl. Phys. Lett. 91, 251909 (2007).
  18. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006).
  19. S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Appl. Phys. Lett. 82, 3874 (2003).
  20. K. Oe, Jpn. J. Appl. Phys. 41, 2801 (2002).