DOI QR코드

DOI QR Code

A Technique to Enhance Bacillus thuringiensis Spectrum and Control Efficacy Using Cry Toxin Mixture and Immunosuppressant

Cry 독소단백질 혼합과 면역억제제 첨가를 통한 Bacillus thuringiensis 살충제 적용범위 및 방제력 증진 기술

  • Eom, Seonghyeon (Department of Bioresource Sciences, Andong National University) ;
  • Park, Youngjin (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 엄성현 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박영진 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2014.06.10
  • Accepted : 2014.09.19
  • Published : 2014.09.30

Abstract

An entomopathogenic bacterium, Bacillus thuringiensis (Bt), can sporulate along with production of insecticidal Cry toxins. Bt Cry toxins exhibit relatively narrow spectrum to target insects due to their specific interactions with midgut receptors. This study designed several strategies to enhance Bt efficacy in target insect spectrum and insecticidal activity. Four Cry toxins were purified from four different Bt strains and showed relatively narrow target insect spectrum. However, the Cry mixtures significantly expanded their target insect spectra. The additional effect of baculovirus to Cry toxin was tested with recombinant baculoviruses expressing Cry1Ac or Cry1Ca. However, the baculovirus was little effective to expand target insect spectrum. Bacterial culture broth of Xenorhabdus nematophila (Xn) significantly suppressed insect cellular immune response and increased Cry toxicity. The addition of Xn culture broth to Cry mixture significantly enhanced Bt efficacy in target insect spectrum and insecticidal activity.

Acknowledgement

Supported by : 농림축산식품부

References

  1. Adamo, S. A. (2008) Bidirectional connections between the immune system and the nervous system in insects, In Insect immunology; Beckage, N. E., Eds.; Academic Press, New York, pp. 129-149.
  2. Akhurst, R. J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121:303-309.
  3. Beckage, N. E. (2008) Insect immunology. 348 pp. Academic Press, New York.
  4. BenFarhat, D., M. Danmark, S. B. Khedher, S. Mahfoudh, S. Kammoun, and S. Tounsi (2013) Response of larval Ephestia kueniella (Lepidoptera: Pyralida) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. J. Invertebr. Pathol. 114:71-75. https://doi.org/10.1016/j.jip.2013.05.009
  5. Bravo, A., S. S. Gill and M. Sobern (2005) Bacillus thuringiensis mechanisms and use, In Comprehensive molecular insect science; Gilbert, L. I., K. Iatrou and S. S. Gill, Eds.; Elsevier; New York, pp. 175-206.
  6. Bravo, A., I. Gmez, H. Porta, B. I. Garcia-Gmez, C. Rodriguez-Almazan, L. Pardo and M. Sobern (2012) Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. 6:17-26.
  7. Bravo, A., S. Likitvivatanavong, S. S. Gill and M. Sobern (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41:423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  8. Broderick, N. A., K. F. Raffa and J. Handelsman (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103:15196-15199. https://doi.org/10.1073/pnas.0604865103
  9. Broderick, N. A., K. F. Raffa and J. Handelsman (2010) Chemical modulators of the innate immune response alter gypsi moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10:129. https://doi.org/10.1186/1471-2180-10-129
  10. Brownbridge, M. and J. Margalit (1986) New Bacillus thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J. Invertebr. Pathol. 48:216-222. https://doi.org/10.1016/0022-2011(86)90126-6
  11. Contreras, E., C. Rausell and M. D. Real (2013) Tribolium castaneum apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J. Invertebr. Pathol. 113:209-213. https://doi.org/10.1016/j.jip.2013.04.002
  12. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie and D. Lereclus (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:807-813.
  13. Crickmore, N., J. Baum, A. Bravo, D. Lereclus, K. Narva, K, Sampson, E. Schnepf, M. Sun and D. R. Zeigler (2014) 'Bacillus thuringiensis toxin nomenclature'. http://www.btnomenclature.info.
  14. Dong, F., R. Shi, S. Zhang, T. Zhan, G. Wu, J. Shen and Z. Liu (2012) Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Appl. Microbiol. Biotechnol. 96:921-929. https://doi.org/10.1007/s00253-012-4213-y
  15. Eom, S., Y. Park and Y. Kim (2014) Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 52:161-168. https://doi.org/10.1007/s12275-014-3251-9
  16. Gillespie, J. P., M. R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643. https://doi.org/10.1146/annurev.ento.42.1.611
  17. Gho, H. K., S. G. Lee, B. P. Lee, K. M. Choi and J. H. Kim (1991) Simple mass-rearing of beet armyworm, Spodoptera exigua (Hbner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29:180-183.
  18. Grizanova, E. V., I. M. Dubovskiy, M. M. A. Whitten and V. V. Glupov (2014) Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119:40-46. https://doi.org/10.1016/j.jip.2014.04.003
  19. Hwang, J., Y. Park and Y. Kim (2013) An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and IMD pathways by blocking eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83:151-169. https://doi.org/10.1002/arch.21103
  20. Jung, S. and Y. Kim (2006) Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35:1584-1589. https://doi.org/10.1093/ee/35.6.1584
  21. Kaya, H. K. and R. Gaugler (1993) Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  22. Kim, K., H. Kim, Y. Park, K. H. Kim and Y. Kim (2013) An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 52:35-43. https://doi.org/10.5656/KSAE.2013.01.1.080
  23. Kim, Y., D. Ji, S. Cho and Y. Park (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Physiol. 89:258-264. https://doi.org/10.1016/j.jip.2005.05.001
  24. Kirkpatrick, B. A., J. O. Washburn and L. E. Volkman (1998) AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens, J, Invertebr. Pathol. 72:63-72. https://doi.org/10.1006/jipa.1997.4752
  25. Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42:72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
  26. de Magd, R. A., A. Bravo and N. Crickmore (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
  27. Park, H. W., D. K. Bideshi and B. A. Federici (2005) Synthesis of additional endotoxins in Bacillus thuringiensis subsp. morrisoni PG-14 and Bacillus thuringiensis subsp. jegathesan significantly improves their mosquitocidal efficacy. J. Med. Entomol. 42:337-341. https://doi.org/10.1603/0022-2585(2005)042[0337:SOAEIB]2.0.CO;2
  28. Park, J. W. and B. L. Lee (2012) Insect immunology, In Insect molecular biology and biochemistry; Gilbert, L. I., Ed.; Academic Press, New York, pp. 480-512.
  29. Park, Y. and Y. Kim (2003) Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54:143-142. https://doi.org/10.1002/arch.10108
  30. Park, Y., Y. Kim and D. Stanley (2004a) The bacterium Xenorhabdus nematophila inhibits phospholipase $A_2$ from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91:371-373.
  31. Park, Y., Y. Kim, H. Tunaz and D. W. Stanley (2004b) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase $A_2$ ($PLA_2$) in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86:65-71. https://doi.org/10.1016/j.jip.2004.05.002
  32. Rahman, M. M., H. L. S. Roberts, M. Sarjan, S. Asgari and O. Schmidt (2004) Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101:2696-2699. https://doi.org/10.1073/pnas.0306669101
  33. Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin and Y. H. Je (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17:547-559.
  34. SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  35. Seo, S., S. Lee, Y. Hong and Y. Kim (2012) Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Entomol. 78:3816-3823. https://doi.org/10.1128/AEM.00301-12
  36. Shrestha, S. and Y. Kim (2009) Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47:774-782. https://doi.org/10.1007/s12275-009-0145-3
  37. Singh, G., P. J. Rup and O. Koul (2007) Acute, sublethal and combination effects of azarirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Bull. Entomol. Res. 97:351-357. https://doi.org/10.1017/S0007485307005019
  38. Stanley, D. and Y. Kim (2014) Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33:20-63. https://doi.org/10.1080/07352689.2014.847631
  39. Vojtech, E., M. Meissle and G. M. Poppy (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). Transgenic Res. 14:133-144. https://doi.org/10.1007/s11248-005-2736-z
  40. Washburn, J. O., B. A. Kirkpatrick and L. E. Volkman (1995) Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209:561-568. https://doi.org/10.1006/viro.1995.1288
  41. Washburn, J. O., J. F. Wong and L. E. Volkman (2001) Comparative pathogenesis of Helicoverpa zea S nucleopolyhedrovirus in noctuid larvae. J. Gen. Virol. 82:1777-1784. https://doi.org/10.1099/0022-1317-82-7-1777
  42. Wirth, M. C., Y. Yang, W. E. Walton, B. A. Federici and C. Berry (2007) Mtx toxins synergize Bacillus spaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl. Environ. Microbiol. 73: 6066-6071. https://doi.org/10.1128/AEM.00654-07
  43. Zhang, X., M. Candas, N. B. Griko, R. Taussig and L. A. Bulla, Jr. (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103:9897-9902. https://doi.org/10.1073/pnas.0604017103