DOI QR코드

DOI QR Code

Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

Haque, Niamul;Cho, Dae-Chul;Kwon, Sung-Hyun

  • Received : 2014.09.02
  • Accepted : 2014.10.17
  • Published : 2014.10.31

Abstract

Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC's performance.. The order of maximum power density was $913mWm^{-2}$ for Zn, $646mWm^{-2}$ for Fe, $387.8mWm^{-2}$ for Cu, $266mWm^{-2}$ for Al, and $127mWm^{-2}$ for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.

Keywords

Sediment microbial fuel cell;Microbial corrosion;Oxidation reduction potential;Chemical Oxygen Demand

References

  1. Kim, H.J., Hyun, M.S., Chang, I.S., Kim, B.H., 1999b, A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella puterfaciens. J. Microbial. Biotechnol., 9, 365-367.
  2. Wei, D., Zhang, X., 2007, Current production by a deep-sea strain Shewanella sp. DS1. Current Microbiology, 55, 497-500 https://doi.org/10.1007/s00284-007-9019-2
  3. Kim, H. J., Park, H.S., Hyun, M. S, Chang, I.S., Kim. M., Kim, B.H., 2002, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense, Enzyme Microb. Technol., 30, 145-152. https://doi.org/10.1016/S0141-0229(01)00478-1
  4. Kim, H.J., Park, H.S., Hyun, M.S., Chang I. S., Kim, M., Kim, B.H., 2002, A mediator-less microbial fuel cell using a metallic bacterium Shewanella puterfaciens, Enzyme Microb. Technol., 30, 125-152. https://doi.org/10.1016/S0141-0229(01)00475-6
  5. Kim, J. R., Min, B., Logan, B.E., 2005, Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbial Biotechnol., 68, 23-30. https://doi.org/10.1007/s00253-004-1845-6
  6. Kus, E., Abboud, R., Popa, R., Nealson, K.H., Mansfeld, F., 2005, The concept of the bacterial battery. Corros. Sci., 47, 1063-1069. https://doi.org/10.1016/j.corsci.2004.07.027
  7. Kusel, K., Dorsch, T., Acker, G., Stackebrandt, E., 1999, Microbial reduction of Fe (III) in acidic sediments: Isolation of Acidiphiliun cryptum JF-5 capable of coupling the reduction of Fe (III) to the oxidation of glucose. Appl. Environ. Microbiol., 65, 3633-3640.
  8. Liu, H., Logan, B. E., 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38, 4040-4046. https://doi.org/10.1021/es0499344
  9. Lee, S.A,, Choi Y., Jung, S.H., Kim S., 2002, Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxidans, Bioelectrochemistry, 57, 173-178. https://doi.org/10.1016/S1567-5394(02)00115-9
  10. Liu, H, Cheng, S. A., Logan, B.E.,2005, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol., 39, 5488-5793. https://doi.org/10.1021/es050316c
  11. Liu, H., Cheng, S. A., Logan, B.E., 2005, Production of electricity from acetate or butyrate using a single-chambered microbial fuel cell, Environ. Sci. Technol., 39, 658-662. https://doi.org/10.1021/es048927c
  12. Liu, H., Ramnarayanan, R, Logan, B. E., 2004, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38, 2281-2285. https://doi.org/10.1021/es034923g
  13. Logan BE. Extracting hydrogen electricity from renewable resources, 2004, Environ. Sci. Technol, 38, 160A-167A. https://doi.org/10.1021/es040468s
  14. Logan, B.E., Hamelers, B., Rozendal, R., Schroder,V., Keller,V., Freguia, S., Aelterman, P., Verstraete, W, Rabaey, K., 2006, Microbial fuel cells: Methodology and technology, Environmental Science & Technology, 40, 5181-5192, doi:10.1021/es0605016. https://doi.org/10.1021/es0605016
  15. Logan, B.E., Murano, C., Scott, K., Gray, N.D., Head, I. M., 2005, Electricity generation from cysteine in a microbial fuel cell. Water Res., 39, 942-952. https://doi.org/10.1016/j.watres.2004.11.019
  16. Malki, M., De Lacey, A.L., Rodriguez, N., Amils, R., Fernandez, V.M., 2008, Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen. Appl. Environ. Microbiol., 74, 4472-4476. https://doi.org/10.1128/AEM.00209-08
  17. Cheng, S., Liu, H., Logan, B.E., 2006, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Environ. Sci. Technol., 40, 364-369. https://doi.org/10.1021/es0512071
  18. Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Nealson, K.H., Ringeisen, B.R., 2008, The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens. Bioelectron., 24, 900-905. https://doi.org/10.1016/j.bios.2008.07.034
  19. Bond, D.R., Lovely, D. R. 2003, Eelectricity production by Geobacter sulfurreducens attached to electrodes. Apple. Environ. Microbial., 69:1546-1555.
  20. Chaudhuri, S.K., Lovley, D. R., 2003, Electricity generation by direct oxidation of glucose in mediator-less microbial fuel cells. Nat. Biotechnol., 21, 1229-1232. https://doi.org/10.1038/nbt867
  21. Choi, Y., Song, J., Jung, S., Kim, S., Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus s, 2001, J. Microbiol. Biotechnol., 11, 863-869.
  22. Erable, B., Etcheverry, L., Bergel, A., 2009, Increased power from a two chamber microbial fuel cell with a low pH air-cathode compartment. Electrochem. Commun., 11,619-622. https://doi.org/10.1016/j.elecom.2008.12.058
  23. Froelich, P.N., Klinkhammer, G. P., Bender, M.L., Luedtke, N. A., Heath, G.R., Cullen, D., Dauphis, P., Hammond, D., Hartman, B., Maynard, V.,1979, Early oxidation of organic-matter in pelagic sediments of the eastern equatorial Atlantic-sub oxic digenesis, Geochim. Cosmochim. Acta 1979, 43 (7), 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
  24. Gil GC, IS Chang, BH Kim, M Kim, JK Jang, HS Park, HJ Kim. Operating parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron., 2003, 18:327-334. https://doi.org/10.1016/S0956-5663(02)00110-0
  25. Grady, C.P.L. Jr, Daigger, G. T., Lim, H.C. In Biological wastater treatment, 2nd ed., New York, Marcek, 1999.
  26. Gregory, K.B., Bond, D.R., Lovley D.R., 2004, Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol., 6, 596-604. https://doi.org/10.1111/j.1462-2920.2004.00593.x
  27. Katz, E., Willner, I., Kotlyar, A. B., A noncom-partmentalized glucose vertical bar O-2 biofuel cell by bioengineered electrode surfaces,1999, J. Electroanal. Chem., 479, 64-68. https://doi.org/10.1016/S0022-0728(99)00425-8
  28. Holmes, D. E., Bond, D.R., Lovley, D.R., 2004a, Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes, Applied Environmental Micro-biology,70,1234-1237. https://doi.org/10.1128/AEM.70.2.1234-1237.2004
  29. Holmes, D.E., Bond, D.R., O'Neill, R.A., Reimers, C.E., Tender, L.R., Lovley, D.R., 2004b, Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecology, 48, 178-190. https://doi.org/10.1007/s00248-003-0004-4
  30. Johnson, D.B., McGinness, S., 1991, Ferric iron reduction by acidophilic heterotrophic bacteria. Appl. Environ. Microbiol., 57, 207-211.
  31. Kim, B.H., Kim, H.J., Hyun, M.S., DH Park. Direct electrode reaction of Fe(iii) reducing bacterium, Shewanella puterfaciens, J. Microbial. Biotechnol., 1999a, 127-131.
  32. McKinlay, J.B., Zeikus, J.G., 2004, Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli, Appl. Environ. Microbiol., 70, 3467-3474. https://doi.org/10.1128/AEM.70.6.3467-3474.2004
  33. Min B, Logan, B.E., 2004, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38, 5809-5812. https://doi.org/10.1021/es0491026
  34. Moon, H., Chang, I.S., Kang, K.H., Jang, J.K, Kim, B.H., 2005, Residence time distribution in microbial fuel cell and its influence on COD removal with electricity production. Biochem. Eng. J., 27, 59-65. https://doi.org/10.1016/j.bej.2005.02.010
  35. Park, D.H., Zeikus, J.G., 2000, Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol, 66, 1292-1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  36. Park, D.H., Zeikus, J.G., 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348-355. https://doi.org/10.1002/bit.10501
  37. Rabaey, K., Verstraete, W., 2005, Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23, 291-298, doi:10.1016/j.tibtech.2005.04.008 https://doi.org/10.1016/j.tibtech.2005.04.008
  38. Park, H.S., Kim, B.H., Kim, H.S., Kim H.J. HJ, Kim, G.T., Kim, M., Chang, I.S., Park, Y.K., Chang, H.I.,2001, A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe 7, 297-306. https://doi.org/10.1006/anae.2001.0399
  39. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., Verstraete, W., 2004, Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70, 5373-5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  40. Rabaey, K., Sompel K.V.D., Maignien L., Boon N., Aelterman P., Clauwaert P., Schamphelaire L.D., Pham H.T., Vermeulen J., Verhaege M., Lens P., Verstraete W., 2006, Microbial fuel cells for sulfide removal, Environmental Science & Technology, 40, 5218-5224, doi:10.1021/es060382u. https://doi.org/10.1021/es060382u
  41. Schroder, U., Niessen, J., Scholz, F., A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude, 2003, Angew. Chem., Int. Ed., 42, 2880-2883. https://doi.org/10.1002/anie.200350918
  42. Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., Lovley, D.R., 2002, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821-825. https://doi.org/10.1038/nbt716
  43. Tsujimura, S.,Wadano, A., Kano, K., Ikeda, T., 2001, Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water generating oxidase. Enzyme Microb. Technol., 29, 225-231. https://doi.org/10.1016/S0141-0229(01)00374-X
  44. Videla, H. A., Manual of Biocorrosion, CRC Press, 1996.
  45. Mansfeld, F., 2007, The interaction of bacteria and metal surfaces; Electrochimica Acta 52, 7670-7680. https://doi.org/10.1016/j.electacta.2007.05.006
  46. Mathis, B.J., Marshall, C.W., Milliken, C.E., Makkar, R.S., Creager, S.E., May, H.D., 2008, Electricity generation by thermophilic microorganisms from marine sediment. Applied Microbiology & Biotechnology, 78, 147-155. https://doi.org/10.1007/s00253-007-1266-4

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)