• Buyukasik, Engin ;
  • Durgun, Yilmaz
  • Received : 2014.03.31
  • Published : 2014.11.01


A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.


neat submodule;coclosed submodule;coneat submodule;coneat-flat module;absolutely neat module


  1. E. Buyukasik and Y. Durgun, Neat-flat modules,
  2. E. Buyukasik and Y. Durgun, Absolutely s-pure modules and neat-flat modules, Comm. Alg. 43 (2015), no. 2, 384-399.
  3. T. J. Cheatham and D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175-177.
  4. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Basel, 2006.
  5. S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc. 89 (2014), no. 2, 343-352.
  6. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull. 19 (1976), no. 3, 361-362.
  7. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
  8. L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012), no. 2, 131-143.
  9. A. I. Generalov, Weak and $\omega$-high purities in the category of modules, Mat. Sb. (N.S.) 105(147) (1978), no. 3, 389-402, 463.
  10. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
  11. C. Lomp, On the splitting of the dual Goldie torsion theory, Algebra and its applications (Athens, OH, 1999), 377-386, Contemp. Math., 259, Amer. Math. Soc., Providence, RI, 2000.
  12. G. Renault, Etude de certains anneaux lies aux sous-modules complements d'un A- module, C. R. Acad. Sci. Paris 258 (1964), 4888-4890.
  13. J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York, 1979.
  14. L. Salce, Almost perfect domains and their modules, Commutative algebra-Noetherian and non-Noetherian perspectives, 363-386, Springer, New York, 2011.
  15. E. G. Skljarenko, Relative homological algebra in the category of modules, Uspehi Mat. Nauk 33 (1978), no. 3(201), 85-120.
  16. P. F. Smith, Injective modules and prime ideals, Comm. Algebra 9 (1981), no. 9, 989-999.
  17. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
  18. J. Xu, Flat Covers of Modules, Springer-Verlag, Berlin, 1996.
  19. H. Zoschinger, Koatomare Moduln, Math. Z. 170 (1980), no. 3, 221-232.
  20. H. Zoschinger, Schwach-injektive Moduln, Period. Math. Hungar. 52 (2006), no. 2, 105-128.
  21. H. Zoschinger, Schwach-Flache Moduln, Comm. Algebra 41 (2013), no. 12, 4393-4407.

Cited by