Vibration Analysis of a Bogie Using Linearized Dynamic Equations of a Multibody System

다물체계의 선형 동역학식을 이용한 대차의 진동 해석

  • Received : 2014.06.19
  • Accepted : 2014.09.02
  • Published : 2014.10.31


In this paper, linear dynamic equations are derived from nonlinear dynamic equations of constrained multibody systems using the QR decomposition method. The derived linear equations are applied to a railway vehicle bogie. The vibration characteristics of the railway vehicle are investigated by calculating the natural mode and transfer function of the bogie frame in relation to rail-roughness input. The main modes of the bogie were found below 35Hz, and the local modes above 198Hz. The magnitude of the vertical transfer function varied with the forward velocity due to vertical and pitch modes, which were influenced by the forward velocity. The magnitude of the lateral transfer function was negligibly small, and the mode in the longitudinal direction was excited for longitudinal transfer function regardless of the forward velocity.

본 연구에서는 구속된 다물체계의 비선형 운동방정식으로부터 QR분해법을 이용하여 선형 운동방정식을 유도하는 방법을 제시하였다. 다물체계의 선형 진동 방정식을 철도차량 대차에 적용하여 대차의 고유 진동모드를 구하고 레일의 변위 입력에 대한 대차프레임의 전달 함수를 구하여 대차의 진동 특성을 분석하였다. 대차의 고유 모드는 35Hz이하에서 나타났고 198Hz이상에서 국부모드가 계산되었다. 대차 프레임의 수직변위 전달함수는 수직변위 모드와 피치 모드가 속도에 영향을 받기 때문에 속도에 따라 변화하는 것으로 나타났다. 횡방향 전달함수는 매우 작게 나타났으며 전후방향 전달함수는 속도에 관계없이 전후방향 변위 모드가 주로 가진되는 것으로 나타났다.


Supported by : 한국연구재단


  1. J. Zhou, G Shen, H Zhang, L Ren (2008) Application of modal parameters on ride quality improvement of railway vehicles, Vehicle System Dynamics, 46, Supplement, pp. 629-641.
  2. D. Gong, W. Sun, J. Zhou, X. Xiea (2011) Analysis on the Vertical Coupled Vibration between Bogies and Metro Car Body, Procedia Engineering, 16, pp. 825-831.
  3. A. Stribersky, F. Moser, W. Rulka (2002) Structural dynamics and ride comfort of a rail vehicle system, Advances in Engineering Software, 33, pp. 541-552.
  4. N. Orlandea, M. A.Chase, D.A. Calahan (1977) A Sparsity- Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems-Parts I and II, ASME J. Eng. Ind., 99, pp. 773-784.
  5. D.H. Choi, J.H. Park, H.H. Yoo (2005) Modal analysis of constrained multibody systems undergoing rotational motion, Journal of Sound and Vibration, 280, pp. 63-76.
  6. J.S. Kang, S. Bae, J.M. Lee, T.O. Tak (2003) Force Equilibrium Approach for Linearization of Constrained Mechanical System Dynamics, Journal of Mechanical Design, 125, pp. 143-149.
  7. W. Jiang, X.D. Chen, X. Luo, Y.T. Hu, H.P. Hu (2011) Vibration Calculation of spatial multibody systems based on constrained- topology transformation, Journal of Mechanics, 27(4), pp. 479-491.
  8. J.S. Kang (2012) A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact, Journal of the Korean Society for Railway, 15(1), pp. 1-8.
  9. S.S. Kim, Vanderplog (1986) QR decomposition for state space representation of constrained mechanical dynamic systems, Journal of Mechanisms, Transmissions, and Automation in Design, 108, pp. 183-188.
  10. Using Matlab Ver. 6 (2004) The Mathworks Inc., Natick, MA, USA.
  11. Kik, W., Moelle, D. (2000) Implementation of the wheel-rail element in ADAMS/Rail Ver. 10.1., In: 5th ADAMS/Rail User's Conference, Haarleem.