DOI QR코드

DOI QR Code

Direct Interaction between Ras Homolog Enriched in Brain and FK506 Binding Protein 38 in Cashmere Goat Fetal Fibroblast Cells

  • Wang, Xiaojing (College of Life Sciences, Inner Mongolia University) ;
  • Wang, Yanfeng (College of Life Sciences, Inner Mongolia University) ;
  • Zheng, Xu (College of Life Sciences, Inner Mongolia University) ;
  • Hao, Xiyan (College of Life Sciences, Inner Mongolia University) ;
  • Liang, Yan (College of Life Sciences, Inner Mongolia University) ;
  • Wu, Manlin (College of Life Sciences, Inner Mongolia University) ;
  • Wang, Xiao (College of Life Sciences, Inner Mongolia University) ;
  • Wang, Zhigang (College of Life Sciences, Inner Mongolia University)
  • Received : 2014.02.26
  • Accepted : 2014.07.14
  • Published : 2014.12.01

Abstract

Ras homolog enriched in brain (Rheb) and FK506 binding protein 38 (FKBP38) are two important regulatory proteins in the mammalian target of rapamycin (mTOR) pathway. There are contradictory data on the interaction between Rheb and FKBP38 in human cells, but this association has not been examined in cashmere goat cells. To investigate the interaction between Rheb and FKBP38, we overexpressed goat Rheb and FKBP38 in goat fetal fibroblasts, extracted whole proteins, and performed coimmunoprecipitation to detect them by western blot. We found Rheb binds directly to FKBP38. Then, we constructed bait vectors (pGBKT7-Rheb/FKBP38) and prey vectors (pGADT7-Rheb/FKBP38), and examined their interaction by yeast two-hybrid assay. Their direct interaction was observed, regardless of which plasmid served as the prey or bait vector. These results indicate that the 2 proteins interact directly in vivo. Novel evidence is presented on the mTOR signal pathway in Cashmere goat cells.

Keywords

FK506 Binding Protein 38 [FKBP38];Interaction;mammalian Target of Rapamycin [mTOR];Ras homolog enriched in brain [Rheb]

References

  1. Dunlop, E. A., K. M. Dodd, L. A. Seymour, and A. R. Tee. 2009. Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition. Cell. Signal. 21:1073-1084. https://doi.org/10.1016/j.cellsig.2009.02.024
  2. Bai, X., D. Ma, A. Liu, X. Shen, Q. J. Wang, Y. Liu, and Y. Jiang. 2007. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318:977-980. https://doi.org/10.1126/science.1147379
  3. Banasavadi-Siddegowda, Y. K., J. Mai, Y. Fan, S. Bhattacharya, D. R. Giovannucci, E. R. Sanchez, G. Fischer, and X. Wang. 2011. FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum. J. Biol. Chem. 286:43071-43080. https://doi.org/10.1074/jbc.M111.269993
  4. Basso, A. D., A. Mirza, G. Liu, B. J. Long, W. R. Bishop, and P. Kirschmeier. 2005. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J. Biol. Chem. 280:31101-31108. https://doi.org/10.1074/jbc.M503763200
  5. Bonneau, A. and N. Parmar. 2012. Effects of RhebL1 silencing on the mTOR pathway. Mol. Biol. Rep. 39:2129-2137 https://doi.org/10.1007/s11033-011-0960-6
  6. Brown, H. L. D., K. R. Kaun, and B. A. Edgar. 2012. The small GTPase Rheb affects central brain neuronal morphology and memory formation in Drosophila. PLoS One 7(9):e44888 DOI: 10.1371/journal.pone.0044888 https://doi.org/10.1371/journal.pone.0044888
  7. Duran, R. V. and M. N. Hall. 2012. Regulation of TOR by small GTPases. EMBO Rep. 13:121-128 https://doi.org/10.1038/embor.2011.257
  8. Goorden, S. M. I., M. Hoogeveen-Westerveld, C. Cheng, G. M. van Woerden, M. Mozaffari, L. Post, H. J. Duckers, M. Nellist, and Y. Elgersma. 2011. Rheb is essential for murine development. Mol. Cell. Biol. 31:1672-1678. https://doi.org/10.1128/MCB.00985-10
  9. Hanker, A. B., N. Mitin, R. S. Wilder, E. P. Henske, F. Tamanoi, A. D. Cox, and C. J. Der. 2010. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 29:380-391 https://doi.org/10.1038/onc.2009.336
  10. Lam, E., M. Martin, and G. Wiederrecht. 1995. Isolation of a cDNA encoding a novel human FK506-binding protein homolog containing leucine zipper and tetratricopeptide repeat motifs. Gene 160:297-302. https://doi.org/10.1016/0378-1119(95)00216-S
  11. Haupt, K., G. Jahreis, M. Linnert, M. Maestre-Martinez, M. Malesevic, A. Pechstein, F. Edlich, and C. Lucke. 2012. The FKBP38 catalytic domain binds to Bcl-2 via a charge-sensitive loop. J. Biol. Chem. 287:19665-19673. https://doi.org/10.1074/jbc.M111.317214
  12. Karassek, S., C. Berghaus, M. Schwarten, C. G. Goemans, N. Ohse, G. Kock, K. Jockers, S. Neumann, S. Gottfried, C. Herrmann, R. Heumann, and R. Stoll. 2010. Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. J. Biol. Chem. 285:33979-33991 https://doi.org/10.1074/jbc.M109.095968
  13. Kim, H. W., S. H. Ha, M. N. Lee, E. Huston, D. H. Kim, S. K. Jang, P. G. Suh, M. D. Houslay, and S. H. Ryu. 2010. Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol. Cell. Biol. 30:5406-5420. https://doi.org/10.1128/MCB.00217-10
  14. Lee, M. N., A. Koh, D. Park, J. H. Jang, D. Kwak, H. Jeon, J. Kim, E. J. Choi, H. Jeong, P. G. Suh, and S. H. Ryu. 2013. Deacetylated alphabeta-tubulin acts as a positive regulator of Rheb GTPase through increasing its GTP-loading. Cell Signal 25:539-551. https://doi.org/10.1016/j.cellsig.2012.11.006
  15. Liu, J. O. 2003. Endogenous protein inhibitors of calcineurin. Biochem. Biophys. Res. Commun. 311:1103-1109. https://doi.org/10.1016/j.bbrc.2003.10.020
  16. Ma, D., X. Bai, H. Zou, Y. Lai, and Y. Jiang. 2010. Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. J. Biol. Chem. 285:8621-8627. https://doi.org/10.1074/jbc.M109.092353
  17. Ma, D., X. Bai, S. Guo, and Y. Jiang. 2008. The switch I region of Rheb is critical for its interaction with FKBP38. J. Biol. Chem. 283:25963-25970. https://doi.org/10.1074/jbc.M802356200
  18. Maehama, T., M. Tanaka, H. Nishina, M. Murakami, Y. Kanaho, and K. Hanada. 2008. RalA functions as an indispensable signal mediator for the nutrient-sensing system. J. Biol. Chem. 283:35053-35059. https://doi.org/10.1074/jbc.M805822200
  19. Sato, T., A. Nakashima, L. Guo, and F. Tamanoi. 2009. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J. Biol. Chem. 284:12783-12791. https://doi.org/10.1074/jbc.M809207200
  20. Maestre-Martinez, M., K. Haupt, F. Edlich, P. Neumann, C. Parthier, M. T. Stubbs, G. Fischer, and C. Lucke. 2011. A charge-sensitive loop in the FKBP38 catalytic domain modulates Bcl-2 binding. J. Mol. Recognit. 24:23-34. https://doi.org/10.1002/jmr.1020
  21. Parkhitko, C. A., C. O. Favorova, and E. P. Henske. 2011. Rabin8 protein interacts with GTPase Rheb and inhibits phosphorylation of Ser235/Ser236 in small ribosomal subunit protein S6. Acta Naturae 3:71-76.
  22. Patel, P. H., N. Thapar, L. Guo, M. Martinez, J. Maris, C. L. Gau, J. A. Lengyel, and F. Tamanoi. 2003. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J. Cell Sci. 116:3601-3610. https://doi.org/10.1242/jcs.00661
  23. Sciarretta, S., P. Zhai, D. Shao, Y. Maejima, J. Robbins, M. Volpe, G. Condorelli, and J. Sadoshima. 2012. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125:1134-1146. https://doi.org/10.1161/CIRCULATIONAHA.111.078212
  24. Shirane, M., M. Ogawa, J. Motoyama, and K. I. Nakayama. 2008. Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse. Genes Cells 13:635-651. https://doi.org/10.1111/j.1365-2443.2008.01194.x
  25. Shirane, M. and K. I. Nakayama. 2003. Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat. Cell Biol. 5:28-37. https://doi.org/10.1038/ncb894
  26. Sucher, N. J., E. Yu, S. F. Chan, M. Miri, B. J. Lee, B. Xiao, P. F. Worley, and F. E. Jensen. 2010. Association of the small GTPase Rheb with the NMDA receptor subunit NR3A. Neurosignals 18:203-209. https://doi.org/10.1159/000322206
  27. Uhlenbrock, K., M. Weiwad, R. Wetzker, G. Fischer, A. Wittinghofer, and I. Rubio. 2009. Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett. 583:965-970. https://doi.org/10.1016/j.febslet.2009.02.015
  28. Wang, X., B. D. Fonseca, H. Tang, R. Liu, A. Elia, M. J. Clemens, U. A. Bommer, and C. G. Proud. 2008. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem. 283:30482-30492. https://doi.org/10.1074/jbc.M803348200
  29. Weiwad, M., F. Edlich, F. Erdmann, F. Jarczowski, S. Kilka, M. Dorn, A. Pechstein, and G. Fischer. 2005. A reassessment of the inhibitory capacity of human FKBP38 on calcineurin. FEBS Lett. 579:1591-1596. https://doi.org/10.1016/j.febslet.2004.12.098
  30. Zheng, X., J. F. Yang, X. J. Wang, Y. Liang, M. L. Wu, J. J. Shi, T. Zhang, Y. Qin, S. Y. Li, X. Y. Hao, Z. G. Wang, and D. J. Liu. 2011. Molecular characterization and expresiion pattern of Rheb gene in Inner Mogolia cashmere goat (Capra hircus). Agric. Sci. China 10:1452-1458. https://doi.org/10.1016/S1671-2927(11)60138-7
  31. Zheng, M., Y. H. Wang, X. N. Wu, S. Q. Wu, B. J. Lu, M. Q. Dong, H. Zhang, P. Sun, S. C. Lin, K. L. Guan, and J. Han. 2011. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat. Cell Biol. 13:263-272. https://doi.org/10.1038/ncb2168
  32. Zheng, X., X. Y. Hao, Y. H. Chen, X. Zhang, J. F. Yang, Z. G. Wang, and D. J. Liu. 2012. Molecular characterization and tissue-specific expression of a novel FKBP38 gene in the cashmere goat (Capra hircus). Asian Australas. J. Anim. Sci. 25:758-763. https://doi.org/10.5713/ajas.2011.11398
  33. Yadav, R. B., P. Burgos, A. W. Parker, V. Iadevaia, C. G. Proud, R. A. Allen, J. P. O'Connell, A. Jeshtadi, C. D. Stubbs, and S. W. Botchway. 2013. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biol. 14:3. doi: 10.1186/1471-2121-14-3. https://doi.org/10.1186/1471-2121-14-3

Cited by

  1. Proteasome subunit beta type 1 interacts directly with Rheb and regulates the cell cycle in Cashmere goat fetal fibroblasts vol.21, pp.5, 2017, https://doi.org/10.1080/19768354.2017.1371072
  2. SQSTM1/p62 interacts with FKBP38 and regulates cell cycle in Cashmere goat foetal fibroblasts vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1495643