The Expression of Carnosine and Its Effect on the Antioxidant Capacity of Longissimus dorsi Muscle in Finishing Pigs Exposed to Constant Heat Stress

  • Yang, Peige (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Hao, Yue (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Feng, Jinghai (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Lin, Hai (Department of Animal Science, Shandong Agricultural University) ;
  • Feng, Yuejin (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Wu, Xin (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Yang, Xin (Department of Animal Science, Shandong Agricultural University) ;
  • Gu, Xianhong (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences)
  • Received : 2014.01.24
  • Accepted : 2014.06.23
  • Published : 2014.12.01


The objective of this study was to assess the effects of constant high ambient temperatures on meat quality, antioxidant capacity, and carnosine expression in longissimus dorsi muscle of finishing pigs. Castrated 24 male DLY (crossbreeds between Landrace${\times}$Yorkshire sows and Duroc boars) pigs were allocated to one of three treatments: constant ambient temperature at $22^{\circ}C$ and ad libitum feeding (CON, n = 8); constant high ambient temperature at $30^{\circ}C$ and ad libitum feeding (H30, n = 8); and constant ambient temperature at $22^{\circ}C$ and pair-fed with H30 (PF, n = 8). Meat quality, malondialdehyde (MDA) content, antioxidant capacity, carnosine content, and carnosine synthetase (CARNS1) mRNA expression in longissimus dorsi muscle were measured after three weeks. The results revealed that H30 had lower $pH_{24h}$, redness at 45 min, and yellowness at 24 h post-mortem (p<0.05), and higher drip loss at 48 h and lightness at 24 h post-mortem (p<0.01). Constant heat stress disrupted the pro-oxidant/antioxidant balance in longissimus dorsi muscle with higher MDA content (p<0.01) and lower antioxidant capacity (p<0.01). Carnosine content and CARNS1 mRNA expression in longissimus dorsi muscle of H30 pigs were significantly decreased (p<0.01) after three weeks at $30^{\circ}C$. In conclusion, constant high ambient temperatures affect meat quality and antioxidant capacity negatively, and the reduction of muscle carnosine content is one of the probable reasons.


Heat Stress;Meat Quality;Antioxidants;Carnosine;Pigs


  1. Abril, M., M. M. Campo, A. Onenc, C. Sanudo, P. Alberti, and A. I. Negueruela. 2001. Beef colour evolution as a function of ultimate pH. Meat Sci. 58:69-78.
  2. Chen, X., F. Ren, J. Hesketh, X. Shi, J. Li, F. Gan, and K. Huang. 2013. Interaction of porcine circovirus type 2 replication with intracellular redox status in vitro. Redox Rep. 18:186-192.
  3. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121-126.
  4. Azad, M. A. K., M. Kikusato, T. Maekawa, H. Shirakawa, and M. Toyomizu. 2010. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 155:401-406.
  5. Bulygina, E. R. and G. G. Kramarenko. 1995. Isolation of carnosine synthetase from animal and human muscles. Vopr. Med. Khim. 41:27-30.
  6. Cheng, J. H., S. T. Wang, and H. W. Ockerman. 2013. Quality preservation of reduced sodium pork patties: Effects of antioxidants on color and lipid stability. J. Sci. Food Agric. 93:2959-2962.
  7. Cheng, Q. and D. W. Sun. 2008. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 48:137-159.
  8. Chulayo, A. Y. and V. Muchenje. 2013. The Effects of preslaughter stress and season on the activity of plasma creatine kinase and mutton quality from different sheep breeds slaughtered at a smallholder Abattoir. Asian Australas. J. Anim. Sci. 26:1762-1772.
  9. Das, A. K., A. S. R. Anjaneyulu, and S. Biswas. 2006. Effect of carnosine preblending on the quality of ground buffalo meat. Food Chem. 97:531-538.
  10. Jurie, C., I. Ortigues-Marty, B. Picard, D. Micol, and J. F. Hocquette. 2006. The separate effects of the nature of diet and grazing mobility on metabolic potential of muscles from Charo-lais steers. Livest. Sci. 104:182-192.
  11. Decker, E. A. and H. Faraji. 1990. Inhibition of lipid oxidation by carnosine. J. Am. Oil Chem. Soc. 67:650-652.
  12. Dunnett, M., R. C. Harris, C. E. Dunnett, and P. A. Harris. 2002. Plasma carnosine concentration: Diurnal variation and effects of age, exercise and muscle damage. Equine. Vet. J. (Suppl. 34):283-287.
  13. Finkel, T. and N. J. Holbrook. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408:239-247.
  14. Imik, H., H. Ozlu, R. Gumus, M. A. Atasever, S. Urcarand, and M. Atasever. 2012. Effects of ascorbic acid and a-lipoic acid on performance and meat quality of broilers subjected to heat stress. Br. Poult. Sci. 53:800-808.
  15. Kalaz, E. B., B. Evran, S. Develi-Is P. Vural, S. Dogru-Abbasoglu, and M. Uysal. 2012. Effect of carnosine on prooxidantantioxidant balance in several tissues of rats exposed to chronic cold plus immobilization stress. J. Pharmacol. Sci. 120:98-104.
  16. Kauffman, R. G., G. Eikelenboom, P. G. van der Wal, G. Merkus, and M. Zaar. 1986. The use of filter paper to estimate drip loss of porcine musculature. Meat Sci. 18:191-200.
  17. Kuchenmeister, U., G. Kuhn, and K. Ender. 2000. Seasonal effects on $Ca^{2+}$ transport of sarcoplasmic reticulum and on meat quality of pigs with different malignant hyperthermia status. Meat Sci. 55:239-245.
  18. Lin, H., J. Buyse, and E. Decuypere. 2006. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 144:11-17.
  19. Mahmoud, K. Z. and F. W. Edens. 2003. Influence of selenium sources on age-related and mild heat stress-related changes of blood and liver glutathione redox cycle in broiler chickens (Gallus domesticus). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 136:921-934.
  20. Lu, Q. P., J. Wen, and H. F. Zhang. 2007. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult. Sci. 86:1059-1064.
  21. Lu, Q. P., H. F. Zhang, Q. W. Liu, and S. J. Liu. 2010. The effect of high ambient temperature on muscle fiber characteristics and meat quality in growing pig. In: Proceedings of the Sixth National Conference on Feed Nutrition, Yangling, China. pp. 542-543.
  22. Ma, X. Y., Z. Y. Jiang, Y. C. Lin, C. T. Zheng, and G. L. Zhou. 2010. Dietary supplementation with carnosine improves antioxidant capacity and meat quality of finishing pigs. J. Anim. Physiol. Anim. Nutr (Berl). 94:e286-e295.
  23. Mancini, R. A. and M. C. Hunt. 2005. Current research in meat color. Meat Sci. 71:100-121.
  24. Manhiani, P. S., J. K. Northcutt, I. Han, W. C. Bridges, T. R. Scott, and P. L. Dawson. 2011. Effect of stress on carnosine levels in brain, breast, and thigh of broilers. Poult. Sci. 90:2348-2354.
  25. McKee, S. R. and A. R. Sams. 1997. The effect of seasonal heat stress on rigor development and the incidence of pale, exudative turkey meat. Poult. Sci. 76:1616-1620.
  26. Morales, A., F. Grageola, H. Garcia, N. Arce, B. Araiza, J. Yanez, and M. Cervantes. 2014. Performance, serum amino acid concentrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures. J. Anim. Physiol. Anim. Nutr. (Berl). doi: 10.1111/jpn.12161.
  27. Namgung, N., D. H. Shin, S. W. Park, and I. K. Paik. 2010. Effects of supplementary blood meal on carnosine content in the breast meat and laying performance of old hens. Asian Australas. J. Anim. Sci. 23:946-951.
  28. Rosenvold, K. and H. J. Andersen. 2003. The significance of preslaughter stress and diet on color and colour stability of pork. Meat Sci. 63:199-209.
  29. Oyanagui Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 142:290-296.
  30. Perez, M. P., J. Palacio, M. P. Santolaria, M. C. Acena, G. Chacon, M. Gascon, J. H. Calvo, P. Zaragoza, J. A. Beltran, and S. Garcia-Belenguerd. 2002. Effect of transport time on welfare and meat quality in pigs. Meat Sci. 61:425-433.
  31. Placer, Z. A., L. L. Cushman, and B. C. Johnson. 1966. Estimation of product of lipid peroxidation (malonyldialde-hyde) in biochemical systems. Anal. Biochem. 16:359-364.
  32. Salmi B., L. Trefan, L. Bunger, A. Doeschl-Wilson, J. P. Bidanel, C. Terlouw, and C. Larzul. 2012. Bayesian meta-analysis of the effect of fasting, transport and lairage times on four attributes of pork meat quality. Meat sci. 90:584-598.
  33. Sanchez-Escalante, A., D. Djenane, G. Torrescano, B. Gimenez, J. A. Beltran, and P. Roncales. 2003. Evaluation of the antioxidant ability of hydrazine-purified and untreated commercial carnosine in beef patties. Meat Sci. 64:59-67.
  34. Schmittgen, T. D. and K. J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3:1101-1108.
  35. Science and Technology Ministry of China. 2006. The guiding suggestion about treating experimental animals amicablely. No.398 Document.
  36. Velasco, V. and P. Williams. 2011. Improving meat quality through natural antioxidants. Chil. J. Agric. Res. 71:313-322.
  37. Wang, F., Z. R. Xu, and J. H. Su. 2006. Effect of HCH contamination of diet on the growth performance and immune and antioxidant ability in growing/finishing pigs. Vet. Res. Commun. 30:645-654.
  38. Zhu, L. H., K. L. Zhao, X. L. Chen, and J. X. Xu. 2012. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 90:2581-2589.
  39. Wang, R. R., X. J. Pan and Z. Q. Peng. 2009. Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poult. Sci. 88:1078-1084.
  40. Warriss, P. D. and S. N. Brown. 1987. The relationship between initial pH, reflectance and exudation in pig muscle. Meat Sci. 20:65-72.
  41. Zhang, Z. Y., G. Q. Jia, J. J. Zuo, Y. Zhang, J. Lei, L. Ren, and D. Y. Feng. 2012. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 91:2931-2937.
  42. Antonopoulou, E., E. Kentepozidou, K. Feidantsis, C. Roufidou, S. Despoti, and S. Chatzifotis. 2013. Starvation and re-feeding affect Hsp expression, MAPK activation and antioxidant enzymes activity of European Sea Bass (Dicentrarchus labrax). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 165:79-88.

Cited by

  1. Transcriptome analysis reveals that constant heat stress modifies the metabolism and structure of the porcine longissimus dorsi skeletal muscle vol.291, pp.6, 2016,
  2. Effects of dietary supplementation with carnosine on meat quality and antioxidant capacity in broiler chickens vol.58, pp.1, 2017,
  3. Effects of dietary supplementation with carnosine on growth performance, meat quality, antioxidant capacity and muscle fiber characteristics in broiler chickens vol.97, pp.11, 2017,
  4. Effects of high ambient temperature on plasma metabolomic profiles in chicks pp.13443941, 2017,
  5. Short-term heat stress alters redox balance in porcine skeletal muscle vol.5, pp.8, 2017,
  6. The effect of high pre-slaughter environmental temperature on meat quality traits of Italian autochthonous pig Suino Nero Lucano vol.89, pp.7, 2018,