DOI QR코드

DOI QR Code

Effects of Capsaicin on Adipogenic Differentiation in Bovine Bone Marrow Mesenchymal Stem Cell

  • Jeong, Jin Young (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration) ;
  • Suresh, Sekar (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration) ;
  • Park, Mi Na (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration) ;
  • Jang, Mi (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration) ;
  • Park, Sungkwon (Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration) ;
  • Gobianand, Kuppannan (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration) ;
  • You, Seungkwon (The Laboratory of Cell Growth and Function Regulation, Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University) ;
  • Yeon, Sung-Heom (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration) ;
  • Lee, Hyun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
  • Received : 2014.09.16
  • Accepted : 2014.09.29
  • Published : 2014.12.01

Abstract

Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and $10{\mu}M$) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.

Keywords

Bovine Bone Marrow Mesenchymal Stem Cells [BMSCs];Capsaicin;Adipogenesis;Differentiation;Apoptosis

References

  1. Anandakumar, P., S. Kamaraj, S. Jagan, G. Ramakrishnan, and T. Devaki. 2013. Capsaicin provokes apoptosis and restricts benzo(a)pyrene induced lung tumorigenesis in Swiss albino mice. Int. Immunopharmacol. 17:254-259. https://doi.org/10.1016/j.intimp.2013.05.015
  2. Chang, H. Y. and X. Yang. 2000. Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64:821-846. https://doi.org/10.1128/MMBR.64.4.821-846.2000
  3. Beswick, N. S. and J. J. Kennelly. 2000. Influence of bovine growth hormone and growth hormone-releasing factor on messenger RNA abundance of lipoprotein lipase and stearoyl-CoA desaturase in the bovine mammary gland and adipose tissue. J. Anim. Sci. 78:412-419. https://doi.org/10.2527/2000.782412x
  4. Bitencourt, S., F. C. de Mesquita, E. Caberlon, G. V. da Silva, B. S. Basso, G. A. Ferreira, and J. R. de Oliveira. 2012. Capsaicin induces de-differentiation of activated hepatic stellate cell. Biochem. Cell Biol. 90:683-690. https://doi.org/10.1139/o2012-026
  5. Chakraborty, S., M. Mazumdar, S. Mukherjee, P. Bhattacharjee, A. Adhikary, A. Manna, S. Chakraborty, P. Khan, A. Sen, and T. Das. 2014. Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-small cell lung carcinoma cells. FEBS Lett. 588:549-559. https://doi.org/10.1016/j.febslet.2013.11.040
  6. Deans, R. J. and A. B. Moseley. 2000. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28:875-884. https://doi.org/10.1016/S0301-472X(00)00482-3
  7. Guimaraes, E. L. M., M. F. S. Franceschi, C. M. B. Andrade, R. M. Guaragna, R. Borojevic, R. Margis, E. A. Bernard, and F. C. R. Guma. 2007. Hepatic stellate cell line modulates lipogenic transcription factors. Liver Int. 27:1255-1264. https://doi.org/10.1111/j.1478-3231.2007.01578.x
  8. Haramizu, S., F. Kawabata, Y. Masuda, K. Ohnuki, T. Watanabe, S. Yazawa, and T. Fushiki. 2011. Capsinoids, non-pungent capsaicin analogs, reduce body fat accumulation without weight rebound unlike dietary restriction in mice. Biosci. Biotechnol. Biochem. 75:95-99. https://doi.org/10.1271/bbb.100577
  9. Hsu, C. L. and G. C. Yen. 2007. Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J. Agric. Food Chem. 55:1730-1736. https://doi.org/10.1021/jf062912b
  10. Kennedy, A., K. Martinez, S. Schmidt, S. Mandrup, K. LaPoint, and M. McIntosh. 2010. Antiobesity mechanisms of action of conjugated linoleic acid. J. Nutr. Biochem. 21:171-179. https://doi.org/10.1016/j.jnutbio.2009.08.003
  11. Hwang, J. T., I. J. Park, J. I. Shin, Y. K. Lee, S. K. Lee, H. W. Baik, J. Ha, and O. J. Park. 2005. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338:694-699. https://doi.org/10.1016/j.bbrc.2005.09.195
  12. Jeong, J., J. Bong, G. D. Kim, S. T. Joo, H. J. Lee, and M. Baik. 2013. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls. J. Anim. Sci. 91:4692-4704. https://doi.org/10.2527/jas.2012-6089
  13. Jeong, J., E. G. Kwon, S. K. Im, K. S. Seo, and M. Baik. 2012. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J. Anim. Sci. 90:2044-2053. https://doi.org/10.2527/jas.2011-4753
  14. Kim, C. S., W. H. Park, J. Y. Park, J. H. Kang, M. O. Kim, T. Kawada, H. Yoo, I. S. Han, and R. Yu. 2004. Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J. Med. Food 7:267-273. https://doi.org/10.1089/jmf.2004.7.267
  15. Lee, M. S., C. T. Kim, I. H. Kim, and Y. Kim. 2011. Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother. Res. 25:935-939. https://doi.org/10.1002/ptr.3339
  16. Lin, C. H., W. C. Lu, C. W. Wang, Y. C. Chan, and M. K. Chen. 2013. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells. BMC Complement. Altern. Med. 13:46. https://doi.org/10.1186/1472-6882-13-46
  17. Moisa, S. J., D. W. Shike, D. E. Graugnard, S. L. Rodriguez-Zas, R. E. Everts, H. A. Lewin, D. B. Faulkner, L. L. Berger, and J. J. Loor. 2013. Bioinformatics analysis of transcriptome dynamics during growth in angus cattle longissimus muscle. Bioinform. Biol. Insights 7:253-270.
  18. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147. https://doi.org/10.1126/science.284.5411.143
  19. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  20. Pande, S. and K. Srinivasan. 2012. Potentiation of hypolipidemic and weight-reducing influence of dietary tender cluster bean (Cyamopsis tetragonoloba) when combined with capsaicin in high-fat-fed rats. J. Agric. Food Chem. 60:8155-8162. https://doi.org/10.1021/jf301211c
  21. Park, S. Y., J. Y. Kim, S. M. Lee, C. H. Jun, S. B. Cho, C. H. Park, Y. E. Joo, H. S. Kim, S. K. Choi, and J. S. Rew. 2014. Capsaicin induces apoptosis and modulates MAPK signaling in human gastric cancer cells. Mol. Med. Rep. 9:499-502. https://doi.org/10.3892/mmr.2013.1849
  22. Ringe, J., C. Kaps, B. Schmitt, K. Buscher, J. Bartel, H. Smolian, O. Schultz, G. R. Burmester, T. Haupl, and M. Sittinger. 2002. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res. 307:321-327. https://doi.org/10.1007/s00441-002-0525-z
  23. Shin, D. W., S. N. Kim, S. M. Lee, W. Lee, M. J. Song, S. M. Park, T. R. Lee, J. H. Baik, H. K. Kim, J. H. Hong, and M. Noh. 2009. (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77:125-133. https://doi.org/10.1016/j.bcp.2008.09.033
  24. Simmons, D. J., P. Seitz, L. Kidder, G. L. Klein, M. Waeltz, C. M. Gundberg, C. Tabuchi, C. Yang, and R. W. Zhang. 1991. Partial characterization of rat marrow stromal cells. Calcif. Tissue Int. 48:326-334. https://doi.org/10.1007/BF02556152
  25. Skrzypski, M., M. Sassek, S. Abdelmessih, S. Mergler, C. Grotzinger, D. Metzke, T. Wojciechowicz, K. W. Nowak, and M. Z. Strowski. 2014. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action. Cell. Signal. 26:41-48. https://doi.org/10.1016/j.cellsig.2013.09.014
  26. Vermes, I., C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger. 1995. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods184:39-51. https://doi.org/10.1016/0022-1759(95)00072-I
  27. Tang, Q. Q. and M. D. Lane. 2012. Adipogenesis: From stem cell to adipocyte. Annu. Rev. Biochem. 81:715-736. https://doi.org/10.1146/annurev-biochem-052110-115718
  28. Prockop, D. J. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71-74. https://doi.org/10.1126/science.276.5309.71
  29. Tsukamoto, H., H. She, S. Hazra, J. Cheng, and T. Miyahara. 2006. Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. J. Gastroenterol. Hepatol. 21(Suppl 3):S102-S105. https://doi.org/10.1111/j.1440-1746.2006.04573.x
  30. Wang, C. Z., Y. Zhang, X. D. Li, Y. Hu, Z. G. Fang, D. J. Lin, R. Z. Xiao, R. W. Huang, H. Q. Huang, P. Q. Liu, and J. J. Liu. 2011. $PPAR{\gamma}$ agonist suppresses TLR4 expression and TNF-${\alpha}$ production in LPS stimulated monocyte leukemia cells. Cell Biochem. Biophys. 60:167-172. https://doi.org/10.1007/s12013-010-9136-6
  31. Wang, Y. W. and P. J. Jones. 2004. Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int. J. Obes. Relat. Metab. Disord. 28:941-955. https://doi.org/10.1038/sj.ijo.0802641
  32. Wise, L. S. and H. Green. 1979. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of $_3T_3$ cells. J. Biol. Chem. 254:273-275.
  33. Woodbury, D., E. J. Schwarz, D. J. Prockop, and I. B. Black. 2000. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61:364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  34. Zhang, L. L., C. Y. Gao, C. Q. Fang, Y. J. Wang, D. Gao, G. E. Yao, J. Xiang, J. Z. Wang, and J. C. Li. 2011. $PPAR{\gamma}$ attenuates intimal hyperplasia by inhibiting TLR4-mediated inflammation in vascular smooth muscle cells. Cardiovasc. Res. 92:484-493. https://doi.org/10.1093/cvr/cvr238
  35. Zhang, L. L., D. Y. Liu, L. Q. Ma, Z. D. Luo, T. B. Cao, J. Zhong, Z. C. Yan, L. J. Wang, Z. G. Zhao, S. J. Zhu, M. Schrader, F. Thilo, Z. M. Zhu, and M. Tepel. 2007. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ. Res.100:1063-1070. https://doi.org/10.1161/01.RES.0000262653.84850.8b
  36. Zhang, Y., N. Chen, J. Zhang, and Y. Tong. 2013. Hsa-let-7g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells. Int. J. Mol. Sci. 14:22708-22720. https://doi.org/10.3390/ijms141122708
  37. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. 2001. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211-228. https://doi.org/10.1089/107632701300062859

Cited by

  1. Tenascin-C expression and its associated pathway in BMSCs following co-culture with mechanically stretched ligament fibroblasts vol.15, pp.5, 2017, https://doi.org/10.3892/mmr.2017.6329
  2. Inhibiting transforming growth factor-β signaling regulates in vitro maintenance and differentiation of bovine bone marrow mesenchymal stem cells pp.15525007, 2018, https://doi.org/10.1002/jez.b.22836