DOI QR코드

DOI QR Code

A View on the Validity of Central Limit Theorem: An Empirical Study Using Random Samples from Uniform Distribution

  • Lee, Chanmi (Department of Statistics, Chonnam National University) ;
  • Kim, Seungah (Department of Statistics, Chonnam National University) ;
  • Jeong, Jaesik (Department of Statistics, Chonnam National University)
  • Received : 2014.09.30
  • Accepted : 2014.11.01
  • Published : 2014.11.30

Abstract

We derive the exact distribution of summation for random samples from uniform distribution and then compare the exact distribution with the approximated normal distribution obtained by the central limit theorem. To check the similarity between two distributions, we consider five existing normality tests based on the difference between the target normal distribution and empirical distribution: Anderson-Darling test, Kolmogorov-Smirnov test, Cramer-von Mises test, Shapiro-Wilk test and Shaprio-Francia test. For the purpose of comparison, those normality tests are applied to the simulated data. It can sometimes be difficult to derive an exact distribution. Thus, we try two different transformations to find out which transform is easier to get the exact distribution in terms of calculation complexity. We compare two transformations and comment on the advantages and disadvantages for each transformation.

References

  1. Anderson, T. W. (1962). On the distribution of the two-sample Cramer-von Mises Criterion, The Annals of Mathematical Statistics, 33, 1148-1159. https://doi.org/10.1214/aoms/1177704477
  2. Althouse, L. A.,Ware,W. B. and Ferron, J. M. (1998). Detecting departures from normality: A Monte Carlo simulation of a new omnibus test based on moments, Annual meeting of the American Educational Research Association.
  3. Dufour, J. M., Farhat, A., Gardiol, L. and Khalaf, L. (1998). Simulation-based finite sample normality tests in linear regression, Econometrics Journal, 1, 154-173. https://doi.org/10.1111/1368-423X.11009
  4. Dinov, I. D., Christou, N. and Sanchez, J. (2008). Central limit theorem: New SOCR applet and demonstration activity, Journal of Statistics Education, 16, 2.
  5. Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality, Biometrika, 52, 591-611. https://doi.org/10.1093/biomet/52.3-4.591
  6. Micheaux, P. L. and Liquet, B. (2009). Understanding convergence concepts: A visual-minded and graphical simulation-based approach, American Statistician, 63, 173-178. https://doi.org/10.1198/tas.2009.0032
  7. Royston, J. P. (1983). A simple method for evaluating the Shapiro-Francia W' test of non-normality, The Statistician, 32, 297-300. https://doi.org/10.2307/2987935
  8. Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions, The Annals of Mathematical Statistics, 19, 279-281. https://doi.org/10.1214/aoms/1177730256
  9. Shapiro, S. S. and Francia, R. S. (1972). An approximate analysis of variance test for normality, Journal of the American Statistical Association, 67, 215-216. https://doi.org/10.1080/01621459.1972.10481232
  10. Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons, Journal of the American Statistical Association, 69, 730-737. https://doi.org/10.1080/01621459.1974.10480196
  11. Stephens, M. A. (1976). Asymptotic results for goodness-of-fit statistics with unknown parameters, Annals of Statistics, 4, 357-369. https://doi.org/10.1214/aos/1176343411
  12. Stephens, M. A. (1977). Goodness of fit for the extreme value distribution, Biometrika, 64, 583-588. https://doi.org/10.1093/biomet/64.3.583

Cited by

  1. A Geometric Derivation of the Irwin-Hall Distribution vol.2017, 2017, https://doi.org/10.1155/2017/3571419