DOI QR코드

DOI QR Code

Simultaneous Determination of Tetracycline Antibiotics by 3-Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME) and HPLC-UV/Vis

3-상 속빈 섬유-액체상 미량추출법(HF-LPME)과 HPLC-UV/Vis을 이용한 Tetracycline류 항생제 동시분석

Oh, Woong Kyo;Myung, Seung-Woon
오웅교;명승운

  • Received : 2014.06.19
  • Accepted : 2014.09.07
  • Published : 2014.12.20

Abstract

A simple and efficient preconcentration method was developed using three-phase liquid phase microextraction prior to HPLC-UV for simultaneous extraction and determination of tetracycline antibiotics (tetracycline, oxytetracycline, and chlortetracycline). The tetracycline antibiotics were separated simultaneously on a column ($C_8$, $3.0{\times}150mm$, $3{\mu}m$) with high selectivity and sensitivity using gradient elution. Under optimized conditions (extraction solvent, heptanal; pH of donor, 9.0; pH of acceptor, 1.0; stirring speed, 700 rpm; NaCl salt, 0%; and extraction time, 60 min), enrichment factors (EF) were between 5.6 and 22.3. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of $0.08{\sim}0.8{\mu}g/mL$ and $0.4{\sim}1.6{\mu}g/mL$, respectively. The calibration curves were linear within the range of $0.1{\sim}32{\mu}g/mL$ with the square of the correlation coefficient being more than 0.995. The precision (as a relative standard deviation, RSD) and accuracy (as a relative recovery) within working range were 1.3~9.1% and 84~118%, respectively.

Keywords

Tetracycline antibiotics;Sample preparation;HF-LPME;HPLC/UV-Vis

References

  1. Cooper, A. D.; Stubbings, G. W. F.; Kelly, M.; Tarbin, J. A.; Farrington, W. H. H.; Shearer, G. J. Chromatogr., A. 1998, 812, 321. https://doi.org/10.1016/S0021-9673(97)01290-9
  2. Jin, H.; Kumar, A.; Paik, D.; Ha, K.; Yoo, Y.; Lee, Y. Microchem. J. 2010, 94, 139. https://doi.org/10.1016/j.microc.2009.10.010
  3. Bello-Lopeza, M. A.; Ramos-Payana, M.; Ocana-Gonzaleza, J. A.; Fernandez-Torresa, R.; Callejon-Mochona, M. Anal. Lett. 2012, 45, 804. https://doi.org/10.1080/00032719.2012.655676
  4. Sarafraz-Yazdi, A.; Amiri, A. TrAC- Trend. Anal. Chem. 2010, 29, 1. https://doi.org/10.1016/j.trac.2009.10.003
  5. Wang, C.; Li, C.; Zang, X.; Han, D.; Liu, Z.; Wang, Z. J. Chromatogr. A. 2007, 1143, 270. https://doi.org/10.1016/j.chroma.2007.01.027
  6. Rasmussen, K. E.; Padersen-Bjergaard, S. TrAc- Trend. Anal. Chem. 2004, 23, 1. https://doi.org/10.1016/S0165-9936(04)00105-0
  7. Jonsson, J. A.; Mathiasson, L. J. Chromatogr., A. 2000, 902, 205. https://doi.org/10.1016/S0021-9673(00)00922-5
  8. Psillakis, E.; Kalogerakis, N. TrAC-Trend. Anal. Chem. 2003, 22, 565. https://doi.org/10.1016/S0165-9936(03)01007-0
  9. Yang, Y.; Chen, J.; Shi, Y. P. J. Chromatogr., B. 2010, 878, 2813.
  10. Villar-Navarro, M.; Ramos-Payan, M.; Perez-Bernal, J. J.; Fennandez-Torres, R.; Callejon-Mochon, M.; Bello-Lopez, M. A. Talanta 2012, 99, 56.
  11. Lambropoulou, D. A.; Albanis, T. A. J. Biochem. Bioph. Meth. 2007, 70, 200.
  12. Pedersen-Bjergaard, S.; Rasmussen, K. E. J. Chromatogr. A. 2008, 1184, 135.
  13. Desoubries, C.; Hugon, F. C.; Bossee, A.; Pichon, V. J. Chromatogr., B. 2012, 900, 50.
  14. Shariati, S.; Yamini, Y.; Esrafili, A. J. Chromatogr., B. 2009, 877, 393. https://doi.org/10.1016/j.jchromb.2008.12.042
  15. Chopra, I.; Roberts, M. Microbiol. Mol. Biol. Rev. 2001, 65, 232. https://doi.org/10.1128/MMBR.65.2.232-260.2001