DOI QR코드

DOI QR Code

Contribution of Electrostatic Interactions to Protein Folding Reaction

정전기적 상호작용이 단백질 폴딩 반응에 끼치는 영향

Kim, Dae Won;Park, Soon-Ho
김대원;박순호

  • Received : 2014.08.21
  • Accepted : 2014.09.23
  • Published : 2014.12.20

Abstract

The contribution of electrostatic interactions to protein folding reaction was studied by using mutant ubiquitin with lysine to alanine mutation at residue position 29. Based on the three dimensional structure of ubiquitin, lysine 29 is located close to negatively charged glutamate 16 and aspartate 21 and considered to stabilize the native state of ubiquitin by electrostatic interactions between these residues. The equilibrium unfolding experiment showed that the native stability was decreased by about ~20% upon mutation. This observation indicates lysine 29 indeed forms electrostatic interactions with nearby residues. Folding kinetics measurements using stopped-flow device and quantitative analysis of kinetics data indicate that ubiquitin folds from unfolded state to native state via intermediate state as observed previously. This intermediate state was observed to form immediately after the initiation of folding reaction. The folding intermediate was shown to be destabilized considerably upon lysine to alanine mutation. These observations indicate that electrostatic interactions can form early stage of protein folding and hence lead the folding reaction.

Keywords

Protein folding intermediate;Electrostatic interaction

References

  1. Khorasanizadeh, S.; Peters, I. D.; Butt, T. R.; Roder, H. Biochemistry 1993, 32, 7054. https://doi.org/10.1021/bi00078a034
  2. Kim, P. S.; Baldwin, R. L. Annu. Rev. Biochem. 1982, 51, 459. https://doi.org/10.1146/annurev.bi.51.070182.002331
  3. Kim, P. S.; Baldwin, R. L. Annu. Rev. Biochem. 1990, 59, 631. https://doi.org/10.1146/annurev.bi.59.070190.003215
  4. Wintrode, P. L.; Makhatadze, G. I.; Privalov P. L. Proteins 1994, 18, 246. https://doi.org/10.1002/prot.340180305
  5. Khorasanizadeh, S.; Peters, I. D.; Roder, H. Nat. Struct. Biol. 1996, 3, 193. https://doi.org/10.1038/nsb0296-193
  6. Park, S.-H. J. Biochem. Mol. Biol. 2004, 37, 676. https://doi.org/10.5483/BMBRep.2004.37.6.676
  7. Pace, C. N.; Shirley, B.A.; Thomson, J. A. In Protein Structure, a Practical Approach; Creighton, T. E., Ed.; Oxford University Press: Oxford, England, 1990; p 311.
  8. Gill, S. C.; von Hippel, P. H. Anal. Chem. 1989, 182, 319.
  9. Schellman, J. A. Biopolymers 1978, 17, 1305. https://doi.org/10.1002/bip.1978.360170515
  10. Pace, C. N. Methods Enzymol. 1986, 131, 266. https://doi.org/10.1016/0076-6879(86)31045-0
  11. Peterman, B. F. Anal. Biochem. 1979, 93, 442. https://doi.org/10.1016/S0003-2697(79)80176-1
  12. Tanford, C. Adv. Prot. Chem. 1970, 24, 1. https://doi.org/10.1016/S0065-3233(08)60241-7
  13. Mathews, C. R. Methods Enzymol. 1987, 154, 498. https://doi.org/10.1016/0076-6879(87)54092-7
  14. Chen, B.; Baase, W. A.; Schellman, J. A. Biochemistry 1989, 28, 691. https://doi.org/10.1021/bi00428a042
  15. Bachmann, A.; Kiefhaber, T. In Protein Folding Handbook, Part I; Buchner, J., Kiefhaber, T., Eds.; WILEYVCH: Weinjeim, Germany, 2005; p 379.
  16. Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol. Biol. 1987, 194, 531. https://doi.org/10.1016/0022-2836(87)90679-6
  17. Baldwin, R. L. Fold. Des. 1996, 1, R1. https://doi.org/10.1016/S1359-0278(96)00003-X
  18. Tanford, C. Adv. Prot. Chem. 1970, 24, 1. https://doi.org/10.1016/S0065-3233(08)60241-7
  19. Shortle, D. Adv. Prot. Chem. 1995, 46, 217. https://doi.org/10.1016/S0065-3233(08)60336-8
  20. Myers, J. K.; Pace, C. N.; Scholtz, J. M. Protein Sci. 1995, 4, 2138. https://doi.org/10.1002/pro.5560041020
  21. Wolynes, P. G.; Onuchic, J. N.; Thirumalai, D. Science 1995, 267, 1619. https://doi.org/10.1126/science.7886447